Lebesgue Integration

The problems below are taken out of various textbooks on real variables, including
“Real Analysis” by Elias M. Stein and Rami Shakarchi and “Real Analysis” by N. L.
Carothers. Questions are also taken from real variables qualifying exams at CUNY
Graduate Center. The problems are color-coded. The color green indicates that the
problem came from a textbook and to the best of my knowledge was not featured on
any qualifying exam. Yellow means that the problem was spotted in at least one
qualifying exam. BB indicates that the problem or one just like it appeared in at least
two qualifying exams.

1. Prove that if fis integrable on R“and § > 0, then f(6x) converges to f(x) in the L'-
normas ¢ - 1.

2| Suppose f is integrable on (-r, 7] and extended to R by making it periodic of
period 27. Show that

fﬁ FOodx = [ f(x)dx

where [ is any interval in R of length 27.

3. Suppose f€ L'[0, o) and for all x € [0, o), |f(x)| < n/2. Show that
Sin(f) € L'[0, o), and

J.:Sin”( F(x)dx =0 as x - co.

4. Find a sequence f , of nonnegative measurable functions such that lim, ,_f , =0,

but lim,_,_ I f, = 1. In fact, show that f , can be chosen to converge uniformly to 0.

5! Let f be measurable with f >0 a.e. If .[E f =0 for some measurable set E, show

that m(E) = 0.

6. Integrability of f on R does not necessarily imply the convergence of f (x) to 0 as
X — 00.
(a) There exists a positive continuous function f on R so that fis integrable on R,
but yet lim sup ,_,_f(x) = .
(b) However, if we assume that fis uniformly continuous on R and integrable,
thenlim, , _f(x)=0.

7 Let g: [0, 1] - [0, 1] be the Cantor function. Calculate E g.



8. Define f: [0, 1] = [0, c0) by f (x) = 0 if x is rational and f (x) = 2" if x is irrational
with exactly n=0, 1, 2, ... leading zeros in its decimal expansion. Show that fis

measurable, and find E f.

Sin(x)

9. Letf: (0, ) = R be the function f(x)= . Prove that the (improper Riemann

integral J.: f(x)dx exists, but that fis not Lebesgue integrable. (The common folklore

is that the two integrals are the same when the Riemann integral exists; the example
shows this can be false when the Riemann integral is “improper.”)

10, Prove that j:e-*dx — lim jo "= (x/n)'dx=1.

11. Compute lim, ,_ J: (1—(x/n))"e*'*dx, justifying your calculations.

12. Suppose fis integrable on [0, b], and
b
g(x) :I —df(y) y forO<x <b.
Yy

Prove that g is integrable on [0, b] and
b b
[ gCadx=[ f(ydy.

18. Let f(x)=x""? for0<x<1and f(x)=0 otherwise. Let {r, } be an enumeration

of Q, and let g(x) = 22_” f(x—r,).Show that:

n=1
(a) ¢ € L'(R) and, in particular, g is finite a.e.
(b) g is discontinuous at every point and is unbounded on every interval; it
remains so even after modification on an arbitrary set of measure zero.

(c) ¢ is finite a.e., but ¢” is not integrable on any interval.

14. Suppose that E c [0, 2n] is measurable and that j x"Cos(x)dx =0 for all
E

n=0,1,2, ... Show that m(E) =0

15. Discuss, giving reasons, for each of the two cases [a, b] = [0, 1], and [a, b] = [-1, 1],
whether or not it is possible for two different continuous functions f and g on [a, b]

to have the same even moments. L.e., J.hxznf(x)dx :jhxz”g(x)dx n=0,1,2...).



16. It f,{f,} are Lebesgue integrable, and if { f, } increases pointwise to f, does it
follow that J- f, = J- f ? Explain.

17. Let ||x|| denote the distance of x from the nearest integer. Suppose Zan is an

n=l1

absolutely convergent series, and 0 < a < 1. Show that the series defining

F0=Ya,

n=1

nx| “ converges for almost all x € R.

18. If fe L'[0, 1], show that x" f(x)e L'[0, 1] for n =1, 2, ... and compute
lim, Ll x" f(x)dx.

19. Compute Z .[;”2 (1—4/Sin(x))" Cos(x)dx . Justify your calculations.
n=0
. Let{f,}, {g,}, and g be integrable on R“, and suppose that f, — fa.e., g, > g

f,|< g, ae, forall n, and that jgn - J-g .Prove that f e L'(R") and that

j f,— j f . (This is a variation of Lebesgue dominated convergence theorem.)

a.e.,

21. Let { g, } be a sequence of Lebesgue integrable functions on R“and suppose that

g, — g ae.and j g, = j g where g is also Lebesgue integrable on R. Answer the

following;:
(a) If A, is an increasing sequence of measurable sets (i.e. A, c A ;) with
lim, . A, =R? and g,(x) = 0 for almost every x, does it follow that

[, > s
AVl
(b) How about if we drop the assumption that g, is nonnegative a.e.?

. Let { f,} be a sequence of integrable functions and suppose that | f, I< g a.e., for
all n, for some integrable function g. Prove that

j (liminf f,) < liminf j f, <limsup j f, < j (limsup f,) .

n—o0 n—o0

23. Let f be measurable and finite a.e. on [0, 1].
(a) It L f =0 for all measurable E c [0, 1] with m(E) = %2, prove that f= 0 a.e. on

[0, 1].



(b) If f> 0 a.e, show that inf{ | f:m(E) =14} >

1
24, Show that lim, ,_ J. f, =0 where f (x) is:
0

nx
1+n°x?
nx
1+n°x?
nxIn(x)
1+n’x?
3/2

n’' x
d
( )1+n2x2

(@)

(b)

95! Find:
(a) an Sin(e’) ;. (b) lim j _nCos(x)

2 2_.3/2
H—sc0 1+n°x

dx
o 1+nx n—seo

26. Fix 0 < a < b, and define f,(x)=a’e™ —b’e™"" . Show that ZII f, =00 and
J-(n 1 j zl'([
27| Compute the following limits, justifying your calculations:
(a) lim j nSm(x/Zn) dx
noe x(1+x7)

1 2
. 1+nx
() lim [ -5
0

n=1 o

(c limJ.de
noes (1+x/n)"

=

(d) lim [——

noee 1 +ntx

dx

28. Let E be a measurable subset of R with m(E) > 0 and let f: E - [0, o] be a
measurable function. Prove that

lim n1n(1+f/n)=jEf

n—oo JE

lim Enln(1+(f/n)”2):oo



29. Let o, B € R, and define f(x)= x%Sin(x”?), 0 < x < 1. For what values of « and B is
1
f: (i) Riemann integrable (in the sense that lim _ . I f(x)dx exists)? (ii) Lebesgue

integrable?
30. For which @ € Ris f(x)= Z:;l xn~“e™™ continuous on [0, c)? in L'[0, c0)?

B1. Let
0= 1/me™ ™
n=1

for x e R.
(a) Isfin L' (R)?
(b) Is f continuous on R?
(c) Is f differentiable on R?

Solutions:

1. We can use the fact that continuous functions with compact support are dense in

L'(R?) to establish the claim. In particular, let ¢ be a continuous function on a compact
support E that satisfies

.[If(x)—g(x)ldx<8.
Then for 6 > 0,
j|f(§ x)—g(8 x)|dx:5-dj|f(x)—g(x)|dx< 5.
And we have
jlf(é‘ x)—f(x)|dxsj|f(§ x)—g(J x) |dx+j|g(§ x)— g(x) |dx+j|g(x)—f(x) dx <
(5™ +1)e+j| 9(8 x)— g(x) 1 dx.
Thus, it suffices to prove
laiirlljlg(é'x)—g(x)ldxzo.

To accomplish this, let Q be a closed cube big enough to contain E and 2E. This closed
cube Q must then contain all sets of the form ¢ ' E whenever ¢ > %2 and therefore the
functions k ;5 (x) = 1 g(d x) — g(x) | are bounded above by 2M, where

M = sup{| g(x) | : x € E}, and supported on Q. By the bounded convergence theorem, we
then have

%iirlljlg(5x)—g(x)ldxzﬂajirlllg(5x)—g(x)|dx=0.

2. We may assume without loss of generality that I is of the form (a -7, a + 7], where



a=2rk+r,keZ and 0 <r <2r. Itis easily derived from the properties of measurable
sets that for any Lebesgue integrable function g on R, one has

Jg(x)dx =Ig(x+h)dx
R? R?
forh e RY.
In particular, if g: (c, d) —» R, then
d
[ "ede= [0z oy (dx=[g(x+h)g,. ,(x+h)dx=
R R

d—,

h
[2Cet My oy =[x+ h)dx
R

Thus,
a+mw 27k +r+7 r+7z
[feode=] " foode=[ " fode=[ T foe+2a0dx 1)
Since f is periodic with period 27, we get from (1)
r+7w
[Frde=[ " f(xdx @
Finally, we break the integral in (2) to obtain

[reodx=[ " podx=] " foodee] 7 o=
[7 r@ac+ [ "7 peer2mde=[ " f(odx.

3. Recall that Sin(x) is a Lipschitz function that satisfies |Sin(x) - Sin(y) | < |x -y].
Therefore |Sin(f (x)) | = |Sin(f (x)) -Sin(0) | < |f(x) - 0| = |f(x)|. By the assumption on
fand monotonicity of the Lebesgue integral,

j:| Sin(£(x)) | dx < j:| F(x)ldx<oo
This shows that Sin(f) € L'[0, o).
The hypothesis that |f (x) | <7/2 implies |Sin(f (x)) | <1 for all x. Consequently,

lim Sin" (f(x)) =0 for all x € [0, o).

Moreover, since | Sin" (f(x))| < 1Sin(f(x))| < | f(x)|, we may apply Lebesgue

dominated convergence theorem to conclude that

j: Sin" (f(x))dx = 0 as x - oo.

4. Define f, (x) = ! X (X), where y . is the indicator function of the interval (0, n).
n

Clearly | f,(x)=01 < ! and therefore f, — 0 uniformly. However, j f, = ln =1.
n n



9. Since f >0a.e. the set E can we written as a union E, U U E, where

n=1

E,={xe E: f(x)<0}isof measureOand E, ={xe E: f(x)2>1/n}.Define f, :l;(En.
n

Then, by monotonicity of the integral,

0=[ /2] 5, =—m(E,).

Thus m(E,) = 0 and therefore m(E) < m(E,) + Zm(En) =0.
n=l1

6. (a) Define for eachn e N

3n*(x—n) xe{n, n+%(l/n)3}

Flx) = n xe[n+%(1/n)3, n+§(1/n)3j

-3n*(x—-n—-(01/n)’) xe {n+§(1/n)3, n+(1/n)3}

0 otherwise

For convenience, a typical segment of the graph of fis displayed below:

|

y=n

A

y =3n*(x—n—-~1/n)’)

™~

y=3n*(x—n)

Clearly, fis continuous on R. As n approaches infinity, the horizontal peak y = n
becomes unbounded. Hence lim sup __,__ f (x) = .

Finally, to see that fis integrable, it suffices to note that f = 0 and that the hill on the
interval [n, n + 1] is bounded above by the function

nZ[n, n+(1/n)’1"
Thus



(b) Assume that fis uniformly continuous and Lebesgue integrable on R. If we
can prove that lim , _f(x) = 0 in the special case when f = 0, the general result will

follow from the decomposition f=f * — f =, where f = max{f, 0} and f ~ = max{-f, 0}.

To that end, notice that if f = 0 is uniformly continuous, but lim,, ,_f (x) # 0, we may
find an € > 0 and a sequence x, such that | x, |[>nand f(x,) = €. Because fis uniformly
continuous, we may also find a ¢ > 0 such that f (x) >e/2 forall x € (x,- 6, x,+ ). We

then have

— &
jfznZ_I:Ez&:oo.

Hence all integrable, uniformly continuous functions must vanish at infinity.

7. Recall that g is the extension of the function c : A — [0, 1] defined on the Cantor set A.
The function c is given by

where x € A has the ternary base representation 0.(2a,)(2a,)...(2a,)... (mod 3) and a, =0

or 1. The function g is consequently defined by g(x) = sup c(y), where the supremum is
takenoverally e Aandy < x.
We can write

fig=[e+ [e= [e

[0,11-A  [0,1]-A

because A is a set of measure 0 and Lebesgue integrals vanish on such sets.
Notice that [0, 1] - A is the union of disjoint open intervals and that g is constant on each
interval. Denote by L, the collection of the 2" disjoint open intervals in [0, 1] - A of

length 37" that were deleted from [0, 1] on the n” step of the construction of the Cantor
set. Let x, ;; 1 =j = 2" denote the left-endpoints of the intervalsin L, . Then

N 2}1 -1
“tm > e, )
n=l j=l1
is the limit of an increasing sequence of step functions. Thus, by the monotone
convergence theorem,
= 1
[g= Z g(x, ;)
[0,1]-A n=1
To compute
2}’[—1

2.8(x, ;)



observe that x, . is of the form 0.(24,)(2a,)...(2a,_;) (mod 3) where a;, =0 or 1. Hence,

J

2}1—1

Se )= ¥ St

(ayseees nl)a—Olll

> Se

(ay,ery_y): 0;=0, 1 i=1

where the sum is taken over all 2" possible vectors (4, @, ) with entries 0 or 1.
Let

n—

s= ¥ 54

(ay,.a,): ¢;=0, 1 i=l

n—2‘ 1
s= Y S oy (Sl
n-2-0):

Then

(aj,...a a;=0, 1 i=1 (ay ety _5,1): 0;=0, 1\ i=1
1 1

n—-2 _
S, +S,,+2 T = 28, +—

n=2 n—1
Clearly, S, =0 and the closed formula for S, is therefore S, = 22" _2 -l .

It follows that
2n—1 1
Zg(xn’ D=8, +== yn-2
J=1 2

Thus,

[e-25 2] -

[0,1]-A n=l1

8. Foreachn=0,1,2,...defineE,=[10"",10""] N (R—Q). Then it is clear that the
function fis given by

/= ZZ";{En
n=0



10

where £ E, is the indicator function of E , . Since fis the limit of simple functions and

therefore the pointwise limit of measurable functions, fis measurable. Applying the
monotone convergence theorem, we obtain

. 2" 9
,[f szxE - 10n+1:§.

n=0

9. There are several ways to prove that f(x) = Sin(x)

is Riemann integrable over (0, o).

One method is to calculate the integral’s exact value by defining the function
g 1[0, c0) = [-0, o] which is given by

gt)= _[Owe_x’ m(x) _[: J.oje_xySin(x)dydx .

If we can express the right-hand-side of the formula in a familiar form of a known

continuous function, the value g(0) = L ) f(x)dx will be the desired result. To that end,
lett>0and setk, h: [0, o) X (t, o) to be the functions k(x, y)=e " Sin(x) and

h(x, y)=e " x respectively. Then |k| <h and since / is nonnegative, we may apply
Tonelli’s theorem to establish that

J: 'r:h(x’ y)dyd = J:o I o:e P xdydx = % < oo

and that therefore i € L' ([0, o) X (t, o0)). This implies that k € L' ([0, o) X (t, o)) as well
and by Fubini’s theorem, we may change the order of integration to obtain

g(t)= J: _r:e_xySin(x)dydx = Itfe‘

Hence g is continuous and g(0) = x/2.

Another slick method to prove the integral exists (borrowed from Carothers) is to write

r Sin(x)
0

X

T 1
=——tan (f
5 (1)

dx as an alternating series:

J-oo Sin(x)dx _ i T Sin(x) .

X n=l (n-)z X

=i 1y I ISil;(x)I i

(n-)m

—Z( DHI ISln(x)I

x+(n-— 1)7r
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To show that the series converges, we only have to show that the terms tend
monotonically to zero. But |Sin(x) | /(x + (n — 1)7) clearly decreases as n increases (for
x fixed), and

dx < — 0,
y X+(n—-Drx n—1

]5 | Sin(x) | 1

To see that the Lebesgue integral does not exist, observe that the assertion “fis
Lebesgue integrable on (0, c0)” is equivalent to the assertion “fis in L' (0, c0)”. That is,
Lebesgue integrability implies the integrability of the function |f |=f "+ f~ and hence
the integrability of f "= max{f, 0} and f ~ = max{-f, 0}. It therefore suffices to show that f *
isn’t integrable.

Fork=0,1,2,...let A, =[2knr, 2k +1)nr]and B, = [2kn + /6, 2k + 1) 1 — n/6] and
define

A= OAk and B = OBk.
k=0 k=0

Then f* = fy, =2 fx, and since Sin(x) = Y2and 1/x = 1/[(2k + 1)1 —n/6] on B, ,
Sin(x) S 3
x 12kz+57
Therefore by the monotone convergence theorem and the monotonicity of the Lebesgue
integral, we have

[ ro=]r 2] 12, >IZIZM+5% f

i 3m(B,) _i 2 _
o 12kx+57 12k +5 '

k=0

10. By elementary calculus lim(1-(x/n))" =e " for every fixed x. Thus the sequence of

functions f,(x)=(1—-(x/n))" X, m(X) converges pointwise to e *on (0, co). Clearly

each f, is nonnegative. Furtheremore
n+l n+l
(l_XJ (1-"j

Sun (X) n+1 _(1 xj n+1
- R R NPT

S O I ()

n n
n+l
(il
n (n+D(n—x)

[l_zj 1+ (n+x _
n (n+D(n—x) B

+

\Y
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=(1—fj(1+ al jzl,
n (n—x)

where in the above estimation we have used Bernoulli’s inequality which asserts that
(I+a)" >1+nawhenever a > -1. Hence we see that f, < f,,,. Consequently, by the
monotone convergence theorem
1=] e de= Jlimf,=lim [/, =lim[ 0=y,
(0.00)

(0.)
(Remark: it is important to note that L ’ (1-(x/n))"dx can be interpreted as either a
Riemann or Lebesgue integral, because the two notions agree for all Riemann integrable

functions on bounded intervals. The improper Riemann integral j:e_xdx also agrees

with its Lebesgue counterpart, because ¢ *is bounded and nonnegative; It can be
shown via the monotone convergence theorem that the two notions agree whenever this
is the case.)

11. As in the previous problem, it is easy to see that the sequence of functions
[, (x)=1-(x/n))" e*'? is nonnegative and increasing and so is the sequence f, 7, ,, -

By elementary calculus, lim f, (x) %, ,,(x) = e “e*'* =¢™'?  Therefore the application of

the monotone convergence theorem yields

. n n xI2 3. 1: o =xr2 5.
lL‘EL (1= (x/n))" e *dx = il_)mm(oj.)fn = ["e " ax=2,
where the Riemann and Lebesgue integrals in the above calculation agree as explained
in the remark at the end of the previous problem.

12, By writing f=f " — f 7, where f "= max{f, 0} and f ~ = max{-f, 0}, we can reduce the
problem to the special case when f = 0.
The integral

J.:g(x)dx = 'f: f%dydx

is an iteration of the R’ integral

J-k(x, v)dydx
R2

where k(x,y) = ) X:(x,y) and the set E is the triangle in R* defined by
y

E={(x, y)eR*:0<x<b,x=<y<b}={(x,y)eR*:0<y<b,0<x<y}
By Tonelli’s theorem, we can write
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Rjz k(x, y)dydx = i i k(o ydedy = [ %dxdy.

Since Ly de is Riemann integrable, the value of the Lebesgue integral agrees with
y

the Riemann integral and equals f(y).
Thus,

[ kCx, ydydx= f(y)dy

which shows that k(x, y) is Lebesgue integrable. By Fubini’s theorem, it then follows
that

Jk(x, yv)dydx = E g(x)dx

In particular, g is Lebesgue integrable and

[ rdy=[ gy

N
13. (a) The sequence of functions g, (x) = Z 27" f(x—r,) is nonnegative and

n=1
increasing to g. Denoting by f, the function f,(x) = f(x—r,) we therefore obtain via the

monotone convergence theorem

Je=[lim g =lim[g, =Y [2"f,=> 2" [
R R R =l R

n=l p
where we used the invariance under translation of Lebesgue integrals to conclude that

_[f (x+r1,)= _[f (x) . Clearly the Lebesgue integral _[f agrees with the improper
R R R

1
Riemann integral I x™2dx =2 and therefore
0

[e=2327=2
R n=l1
In particular, g (x) < « a.e. x.

(b) g is finite a.e. and therefore to show that g is discontinuous at every point and
unbounded in every interval, it suffices to prove that the oscillation at every point
(relative to the subset of R on which g is finite) equals infinity. More precisely, let
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E_={xeR:g(x)=oo}. Thenm(E_) =0and we may picka pointae F=R— E_.
LetI;= (a—0,a + 6) where 6 > 0 is small. Define w , (a : ;) = sup | g(x) - g(y) | where the
supremum is taken over all x, y € F N I ;. Notice that we may pick some rational number
r, inl; and since

lim f(x—r,) =00

X—7,
it follows that for each integer m, there is an interval (r,, x,,) c I ; such that
f(x=r,)>m 2" forall x e (r,, x,) NF. Clearly then, g(x) = 2" f(x—r,) >m . Hence
sup {|g(x) -g(y)|:x, ye FNI4 = sup{|g(x)-g@)|:xeFNI;j}>mandw (a:1,) = co.

Thus the oscillation of g at a relative to F, w , (a) = %in% w ,(a:15) = coas desired.

It is interesting to note that the removal of a larger set E © E_ of measure 0 will note
tame the oscillation at the remaining points, because R - E will remain a dense subset of
R. Thus, we would still be able to choose x € (7,, x,,) N R - E satisfying

gx)= 2" f(x=r,)>m.

(c) Clearly g’is finite whenever g is finite. Hence g’°(x) <o a.e. x. Since the
terms in the series of g are nonnegative, the following inequality may be used to
estimate the integral of g”:

g2<x>:g(x)g(x)=fif<x—r,,>j(if(x—rm)J S flx—r) f(x— r>>2f (x-7,)

n=l m=1

In any interval (a, b), there is a rational number r, satisfying (r,, c) c (a, b), where

¢ =min{b, r, + 1}. Consequently

[ g2 ] g2 [ Xra-—rnz [fa- r>—jf (x)dx

(a,b) (r,,c) (r,,c) k=1 (r,,c)
And since
c—r, c—r,
Ifz (x)dx = Ix_ldx = oo
0 0

g’is not integrable on any interval.

14. Since Cos(x) is a continuous function, by Weierstrass’s theorem there exists a
sequence of polynomials p, which converges uniformly to Cos(x) on the interval [0, 27].

Specifically, for any € > 0, there is some N € N such that

D, — Cos” sup | p,(x)—Cos(x)| <€

xe[0, 27]

whenever n = N.
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Since

.[ p, (x)Cos(x)dx — .[ Cos’ (x)dx

< .[I p,(x)—=Cos(x) ll Cos(x) | dx

sje|Cos(x)|dxsjg:e m(E) < & m([0, 27]) = 27e
E E

it follows that
lim [ p, (x)Cos(x)dx = [ Cos® (x)dx
E E

From the hypothesis that .[ x"Cos(x)dx =0 and the additivity of the integral we are lead
E

to conclude .[ Cos*(x)dx =0 . Now if m(E) > 0, we may pick a closed subset
E

F c E—{n/2, 3n/2} with the property m(F) > %2 m(E). Then F is compact as it is closed
and bounded and Cos’(x) attains a minimum value § > 0 on F. By monotonicity of
integration we then have

0= jcos2(x)dx > jcos2(x)dx > j5: S m(F) >§m(E) >0

which is an obvious contradiction. Thus m(E) = 0 as desired.

15. Since [ x*" f(x)dx =[x g(x)dx if and only if [ ¥ (f(x)~ g(x)dx =0, it suffices to
investigate whether .[ L x f(x)dx=0(forn=1, 2, ...) implies that f (x) = 0 for all x € [a, b].

The Case [a, b] = [0, 1]: Suppose I;xz” f(x)dx=0 forn=1, 2, ... Extend fto a continuous

even function / : [-1, 1] = R by defining
fx)  xel0, 1]
o= {f(—x) xe[-1, 0]
Then
[ node =[x f(=xydx+ [ 2 f()dx=2[ 2 f(x)dx =0
and
[ hydr == [ 2 fxde+ [ 22 f@yde = [ 2 fdx+ [ 2 f (x)dx=0.

In particular, i has both its even and odd moments equal zero. By Weierstrass’s
theorem, there is a sequence of polynomials p, which converges uniformly to & on

[-1, 1]. Thus
1 1
0=lim[ p, (h(x)dx=[ h*(x)dx,

And since h® is nonnegative, h° = 0 a.e. and hence h = 0 a.e. However  is continuous
and takes the value 0 on a dense subset of [-1, 1], which leads us to conclude that / is
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identically zero on [-1, 1]. This clearly implies that f (x) = 0 for any x € [0, 1]. Thus, the
even moments of a continuous function on [0, 1] determine the function.
The Case [a, b] = [-1, 1]: Let f(x)=x. Then fis not identically 0, but

J‘_ll x> f(x)dx =£lx2”+ldx =0,

Thus distinct continuous functions may agree on their even moments.

16. The sequence of Lebesgue integrable functions { f, } increases pointwise to an
integrable function f . Therefore, the sequence { f, — f;} of nonnegative integrable

functions increases pointwise to the nonnegative integrable function f — f,. By the
monotone convergence theorem we then have

[(h=r= -5
Thus,
[f.=]t =+ r=]a-fo+]f=]r.

17. Observe that the function f(x)= Zan”nx”_a is periodic with period 1. That is,
n=1

nx||_a = f(x), because the number

f(x+m)= z a,

n=l
nx is closest to the integer k if and only if the number nx + nm is closest to the integer k
+nm. Forne Z,letE = {x € [n-1, n]: f(x) = oo} and set E = {x € R: f (x) = oo}. If we can
prove that m(E,) = 0, it will follow by periodicity that m(E,) = 0 for all n and hence that
m(E) < im(En) =0.

n=—oo0

By the monotone convergence theorem

1 d 1 -
J'Of = ;an '[OanH “dx
Let g : [0, 1] — R be the function g(x) = ||x|| . Then

B X xe [0, 1/2]
D=1 xen/a

n(x+ m)||_a = ian
n=l1

- >
nx + nm” = z a,
n=1

and

T 2, Lo _a
J.O ||x|| dx = L g " (x)dx = '[O x “dx+ '[1/2( x+1)“dx.
Since 0 < a <1, the improper Riemann integrals J: " x“dx and J;I/Z(—x+1)_“ dx exist and

a-1 a

both equal to Hence J;l g “(x)dx= 12

and this value agrees with the Lebesgue

l-a
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integral J.; g, because all improper nonnegative Riemann integrable functions are also
Lebesgue integrable and of the same value.
We use the periodicity of g to evaluate j:”x”_a dx = J.Ol g “(nx)dx as follows:

Note that the graph of g(nx) is a repetition of the graph of g(x) over each interval of the
form [(k - 1)/n, k/n]. For convenience, the graphs of g(x) and g(3x) below illustrate the
general situation.

05 -
04 —
03 f
02 f
01 f
Interval [0, 1]
< L L L L L L L L L L L L L L L L \>
02 04 06 08 10
Graph of g(x)
05
04 —
03 f
02 f
01 —
[0, 1/3] [1/3, 2/3] [2/3, 1]
< <
T2 04 06 08 10
Graph of g(3x)

It follows that

a

1, I M _2
_[Og (nx)abc—n_[O g (nx)dx—_[og (x)dx—l—'

Hence
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| o | —a e
Lf=;anj0”nxu dx:m;“ﬁ“’-

And since the integral of the nonnegative function f exists, it follows that m(E,) = 0 as
desired.

18. The assumption f € L'[0, 1] implies f s finite a.e. and therefore for almost every x €
[0, 1], limx" f(x) =0. Since

x”f(x)‘ <|f| € L'[0, 1], we may apply the Lebesgue
dominated convergence theorem to conclude that

. . ol ; _
lim jo X" f(x)dx = jo lim x" f (x)dx = 0.

19. To calculate ZJ-O”/Z(I —4/Sin(x))" Cos(x)dx, it would be convenient to interchange the
n=0

integral with the sum. That is to say, if we can justify the equality

ij:lz(l —4/Sin(x))" Cos(x)dx = joﬂlzi (1- /Sin(x)_)” Cos(x)dx,

the problem will reduce to integrating a geometric series that converges for all

Cos(x)
A/ Sin(x)

[0S coswts= [ C0 e a2,

where we use the agreement of the Lebesgue and improper Riemann integrals for
nonnegative Riemann integrable functions.
Finally, to justify interchanging the sum with the integral, define f,, f: (0, 7/2) - R by

fyv(x)= i (1—-4/Sin(x))" Cos(x) and f(x)= i (1—4/Sin(x))" Cos(x). Clearly the f, are

n=0

x € (0, m/2) to the function and hence

nonnegative and f, < f,,, = f . Therefore, by the monotone convergence theorem, we
have

[ reode =" 1im £, Codx = Tim [77 £, (v)dx = jlvizgi [ (1= Sin(x))" Cos(x)dx
= [ (1= Sin(x))" Cos(x)d

And the desired result is proved.

.Define for eachnand N the set E}, ={x e R’: |x| =N, g,(x) <N}and set E, = {x

eR’: |x|] =N, g,(x) <N foralln}. Thatis E, = ﬂE v - Several observations are in

n=1

place.
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Observation1: g, — g a.e., where the g, are nonnegative and therefore 0 < g(x)
for almost every x. Furthermore, g(x) < N whenever x € E,, .

Observation 2: The sets E,, are increasing (E, c E,,,) and since g, — g a.e., the
sequence { g, (x)} is Cauchy and therefore bounded for almost every x. Thus the E,

must increase to a measurable subset E ¢ R’ where m(R“ - E) = 0.
Observation 3: By hypothesis, | f,(x) | < g,(x)a.e.and f, — f a.e, and

therefore for almost every x, g(x)=1lim,__ g,(x)=1lim, | f,(x)I =] f(x) |.In
particular, since g is integrable, so must be fand forallxe E,, | f,(x) |<Nand
| f(x) |<N.

Observation 4: For each N

m,. I(gn -8)=0
E

This follows from the bounded convergence theorem, since g, — g a.e, E, isa
bounded set, and | g,(x)— g(x)| < 2N for all x € E, . Furthermore, using observation 3,

we may also conclude that

m, . [If,-f1=0
E
Observation 5: By observation 4 and the hypothesis I — I g, it follows that

m,,. f(gn—g)—hmn%j(g —g)—lm, f(gn—g) 0

N

We are now ready to prove the main result by estimating ‘ .[ f, - J. f ‘ = ‘ .[ (f,-f )‘ .

[or=-n<]i, fl—jlf f|+j|f -/

jlf f|+jgn [
flf f|+f(gn—g)+2.g
jlf f|+|j<gn—g>|+2jg

Since g is integrable on R“, the integral of g decays to zero out51de a large bounded set.
More precisely, for £ > 0we may pick N large enough so that
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Je<q
g J—
E\ 4
N
Holding this N fixed, we note from observations 4 and 5 that for large n
&£
fif,-ri<=
EN
and
£
| Ign —gl=—
Ey

Hence U( fi=f )‘ < g, from which the assertion J- f, = J- f readily follows.

21. (a) An easy application of exercise 20 shows the statement to be true:
Set

fn = gnZA "
and rename f = g. Observe that f, = f and | f,(x) | = g,(x)a.e. By hypothesis, g, = g

a.e. and .[ g, .[ g, so all the necessary conditions are satisfied for the modified

Lebesgue dominated convergence theorem to apply.

(b) The assumption that g, is nonnegative a.e. is vital and cannot be dropped. To
see this define g,: R - Rand g: R - R by
1 1
En = A0, T A o)
and
g=0
respectively. Also define A, =[-n, ¢"[forn=1,2, ...

n n

Clearly g, — g and this convergence is even uniform. Since Ign = =0, we have

n
the condition I g, I g satisfied as well. Notice however that

n n

P L T
A, 0 -n n .
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l Define the functions /, = i]gf fi, u, =sup f, and set [ =liminf f, and u =limsup f, .

k>n R0 n—oo
Evidently,
i !,<l, and lim/, =1,

n—oo

(i) u, 2u,,, and limu, =u,

n—o0

,and since | f, I< g for all k,

(iii) I/,I< g and lu, I< g a.e. for all n.
Since g is integrable, the application of Lebesgue dominated convergence theorem leads
to the conclusions

j (liminf f,) = jhm [ =lim(7, (1

n—oo n—oo

and

[Gimsupf,) = [1im u, =tim [u, (2).

n—soo

Monotonicity of the integral and the fact that /, < f, <u, for every n imply

lim [ 7, = liminf [, <liminf [ £, <limsup [ f, <limsup [u, =Tim [,
n—oo

n—oo n—o0 n—oo n—oo ’

n—oo

where we use the fact thatjln and jun converge in deriving limJ.ln =liminf |/, and

n—o0 n—oo

limsup j u, =lim | u, respectively. Putting this inequality with identities (1) and (2), we

N—>00 n—oo

get the statement of the exercise.

23. (a) Suppose that .[E f =0 for all measurable E c [0, 1] with m(E) = %2. Set A = {x €

[0, 1]: f (x) = 0} and B = {x € [0, 1]: -f (x) = 0}. Then [0, 1] = A U B and one of the sets A or
B must have outer measure greater than or equal to 2. We show that m(A) = %2 implies f
=0 on [0, 1] a.e. This will establish the desired result, since if m(A) <2, we could switch
to —f.
Assume m(A) = %%. Since A is measurable, by exercise 20 in the measure theory problem
list we can pick a, b € (0, 1) such that m([0, a] N A) =2 and m([b, 1] N A) =%. Then a =
b, for otherwise

1=m([0, 1]) > m([0, a]) + m([b, 1]) = m([0, a] N A) + m([b, 1] N A) =1,
which is a contradiction. Hence, in particular, A = ([0, a] N A) U ([b, 1] N A). For
convenience, we label E = [0, a] N A and F = [b, 1] N A in the calculations that follow.
Since f is nonnegative on A, an easy application of the hypothesis to the sets E and F
yields

J.Af SJ.Ef—i_J.Ff =0.

Consequently, f (x) = 0 for almost every x € A. And since [0, 1] = [0, 2] U [*2, 1], we
have
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1/2
[r= jf [r= jf+jf [ r=0+0-0=0.
1/2
Asfis nonpositive on B, it follows that f (x) = 0 for almost every x € B. The observation

xe[0,1]: f(x)=0 —{xeA f(x) =0} U {x € B: f(x) =0} leads to the conclusion that
mix € [0, 1]: f (x) = 0} = 0 and therefore to the desired result.

(b) Now assume that f> 0 a.e. and define K = {x € [0, 1]: f (x) =0}, K, = {x € [0, 1]
O<f(x)<1/n},and H,={x €[0,1]: f(x) =1/n}. Then for all n, K, and H, are disjoint
and [0, 1] =K, U H, . Furthermore, the sets K, are finite in measure and decreasing
(K, > K,,,) to the limit K with m(K) = 0. In particular, lim, ,, m(K,) =m(K)=0and it

follows that m(K , ) <% for all large enough n. Fix one such n and define

n—o0

P =0 g, () + %an %)

for all x € [0, 1]. Then ¢ is nonnegative and f(x) = ¢(x) for every x in [0, 1]. If E c [0, 1]
with m(E) = %%,

.lEf ZlE(D:lEmHn(D:%m(EmH”)'

Notice that m(E N H,) =m(E) - m(E N K,) = V4. Thus, inf{ IEf :m(E) =%} =1/(4n)>0

24. For parts (a) through (c) it is helpful to note that 0 < (1-nx)* =14+ n°x* —2nx and

3 3/4
therefore 2nx <1+ n’x*. For part (d) we will use the observation o < forallue
+u
R, which can be verified with elementary calculus.
(a) For all x € (0, 1] < =1/2. Thus the f,(x) = ~__ are uniforml
S e _an 1+n°x’ y

bounded on the compact support [0, 1] by M = 2. And since f, — 0 pointwise, it
1

follows from the Lebesgue bounded convergence theorem that I f, —0.
0

Alternatively, observe that

1 1 2

2
[fi=5 B2 dx
0 l+nx

which, after simple u-substitution, reduces to
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n? 2
1 f L, _In@+n’)
2n v, ‘

1+u 2n
\/; . onx
+n’x? 1+n2x2\/__

done in part (a). Since %x’“ ? is Lebesgue integrable on [0, 1] and since

m/x

lim, , ——— =0 for every x, it follows from the Lebesgue dominated convergence

n—eo 2.2

1+n°x

x™"? by the same estimation

(b) Forallx € (0, 1], f,(x) = "

theorem that j f, —0.

(c) By elementary calculus, In(u) < u for all u = 1. Hence,

—1/2
< 2n\/_

| nxIn(x) | |— 2nxIn(x

. The squeeze theorem together with part

I f,(x) 1= =
Jul) |1+n2x2| ‘ 1+n’x* ‘ 1+n’x
1 1 1 n\/;
(b) implies lim, ([ £,/ <lim,__ [I £,(x)ldx <lim,__ 2| 1+ﬁdx =0.
0 0 n°x
3/2 3/2 3 3/4
(d) Notice that for all x € (0, 1], n 2x2 __(m) - L ox 33—)6_”2,
1+n°x" 14+ (nx) \/; 1+u 4
3/2
where we set u = nx. Since lim,_, 11’1—2)62 =0, the integral converges to 0 by Lebesgue
+n°x

dominated convergence theorem.
We can also verify the result with direct Computation'

ln(l +n?)
x —_—

.[ n’'"x J- 2n’x = J-
01+112)c 2\/_ 14+n°x® 2\/; 1+u 2\/;

-0

Sin(e” ) and g(x)— 1 :
+nx’ 1+x

x € [0, ) and all n, | fn (x)1 = g(x). Since f,(x) = 0 for all x # 0 and since

B (@)Let f,(0="

J.g(x)dx = % < o, we may apply Lebesgue dominated convergence theorem to conclude

that lim [ Sinle”)
no=e 1+ nx

dx=0.
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(b) This sequence of integrals converges to 0 as well, but this is not as straight

nCos(x)

forward to demonstrate. Observe that f,(x) = PR is nonnegative in the interval
n°x

[0, 1] with lim,__ f, (x) =0 for all x € (0, 1]. Moreover, for any x <y, f,(x)> f,(y)and so
each function in the sequence is decreasing. In particular, f, — 0 uniformly on any

interval of the form [4, 1] where 0 < a. Uniform convergence allows the interchange of
integral and limit to conclude that

im] 1, = Jlim, =0

Denote by g, : [0, 1] = R, the sequence of functions g, (x) = " -~ and notice that

+n"Xx

n n
fn(x)sl_i_nzxwzS 2 4/2=gn(x).

1+n°x
Hence
1 a
) ) nCos(x) nCos(x)
limsu x)dx =limsu dx +
s 1,0 = [ g 1)
nCos(x)
< hmsu x)dx + hmsu ———=dx
Pjg (x) PI PPENCTE
. n 4
= limsu dx=tan (a).
n—soo p'!‘ 1 + 2)(:2 ( )
Now lim, , tan™'(a) =0 and we can choose 4 arbitrarily close to 0 to establish that

1
limsup | f, (x)dx = 0. Since we are integrating nonnegative functions, the argument is
n & & g g

o
n— 0

complete.

26/ Observe that f,(x) <0if and only if a’e™ <b’e™™", which happens if and only if x

< % as can be verified by moving the exponential functions to the one side and
nb-a
2In(b/ a)
the constants to the other side of the inequality. Set ¢ W and ¢, =c/n. Then
-a
b—a)—2(be™” -
J|f|—Jf+Jf—( ) — 2 e )_p
n n-

And therefore,
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A similar result is obtained when we calculate Z j f.:

n=l
—ae™ +b © 7
Zj‘fn: ae n+ e :Z Cl:oo.

n=l ( ‘0 n=l 1

oo
—nbx

However, when we interchange the sum and product, we get

© o _oo ale ™  ple ™ ~ (1= ~
-([Zf"_J(l—e” 1—e de_ln((l—e”)“}

0

=0.

nSm(x/n)
x(1+x°

and since

27.  (a) Define f,:[0, ) - Rby f, (x)= . Then hm f,(x)= +1 5
x

Sin(x/n)
(x/n)

= g(x). Applying the Lebesgue dominated

<1, it follows that | f, (x)I< ! 5
1+x

convergence theorem therefore yields
lim = dx =—,
i g -([ 1+ x° 2

(b) Define f,:[0,1] = Rby f,(x)= (1+—m;) and observe that for n > 2, each
1+ x
function in the sequence is decreasing. Furthermore, | f, (x)| <1 f,(0)I=1for alln = 2.

And since lim f,(x) =0 for allx >0, f, - 0 a.e. We may therefore apply the bounded

convergence theorem to conclude

1 2
hmjf i [ dx:jnmﬂdx:o

n—>eo o=l (14 x ) ) 1o (1+x2)”
. Sin(x/n) .
(c) Let f,: [0, ) = R be given by f,(x) =————- and define
(1+x/n)"
g,(x)= ; Then if we hold x fixed, lim f,(x) =0, limg, (x)=e “,and | f, | <
(I1+x/n)" n—ee n—ee
| g, . Moreover, if n > 1,
o0 oo —n+l |7
jgn(x)dx:j(ux/n)—"dx:—”(1”/") -
0 0 n—1 |0 n—1

and therefore lim,_,_ J-gn =1.
0
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Notice also that j e ‘dx =1. Hence if we label f (x) =0 and g(x) = ¢e*, we have f, — f
0

a.e, g, > g ae,and g, > | f, la.e, which are the necessary conditions in applying the

version of Lebesgue dominated convergence theorem that was discussed in exercise 20.
In particular, we can now conclude that

limJ. Sin(x/n) dx=J.lim Sin(x/n) de=0

o +x/n)" o= (L+x/n)"

(d) Define f,: [0, c0) = R by f,(x) = " n2 and note that the value of lim I f.
+n’x’

n—oo

clearly depends on a. Despite this, whatever may be the value of a is selected, the
integrand is nonnegative and therefore the techniques of Riemann integration from
elementary calculus may be used to evaluate this Lebesgue integral, since both integrals
yield the same results With the use of simple u - substitution, we obtain

= lim(g —tan™ (na)j )

lim J. f, = hm ———dx=lim 4dx

noe noed |4’y s 1’ y? n—yeo

Hence, if a > 0, 1imjfn=o,ifa=o, 1imjfn=n/2,andifa<o, lim [ f, = 7.

28. Observe first that for any a > 0, the function p(x) = (1+a/x)"is increasing for all x > 0
and lim _,_ p(x) =e“ >1. Thus the sequence of functions
f,(x)=nln(d+ f(x)/n)=In(1+ f(x)/n)" increases pointwise to f = In(e”). By the

monotone convergence theorem, it therefore follows that lim nln(l + f/n)= IE f.

n—oo

With the added assumption that fis not 0 a.e. on E, the expression
nln(l+(f/n)"?)=nIn(1+ \/7 /A/n)"" increases to infinity, since it is of the form (\/7 )«.
and /f >1 on asubset K c E of positive measure. Again, by the monotone

convergence theorem, lim Lnln(l +(f/n)"?) = J.Koo =0,

29. Before proceeding to the problem at hand, it would be helpful to review the
following points:

Observation 1: The output of the Lebesgue integral over a bounded interval [a, b]
is the same as the output of the Riemann integral when the input happens to be a

b b
Riemann integrable function. In particular, (L) I f= (R)j f, whenever fis continuous on

a a

[a, b].
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Observation 2: If fis nonnegative, the monotone convergence theorem easily
b b
implies that (L)j =R j f for any choice of a and b in [-o0, oo].
Observation 3: If the Riemann integral of f over [a, D] is absolutely convergent,

b b
(L) I f =R I f for any choice of 2 and b in [-o0, o] as can be justified with the

a

application of the Lebesgue dominated convergence theorem.
We are now ready to deal with the problem. Let f(x) = x*Sin(x”). We investigate

1
J. f(x)dx by breaking the problem into 3 cases.
0

1 1
Casel: (@>-1,B€R) (R)I|f(x)|dx < (R)Ix”’dx = L Thus, since f
0 0 a+1

is nonnegative and since the Riemann integral of fis absolutely convergent, it follows

forall @ >-1.

1 1
from observation 2 that (L) j f=(R) j f= !
0 0 a+1

arp Sin(x")

Case2: (@<-1,=0.) Write f(x)=x“Sin(x*) = x 7 and fix
X
: Vi
€ >0 such that Sin(x7) —1< 1 . Then
x? 2

| [ (g
S ! P dx +(R) j x®Sin(x*)dx
< (R[] £ (o)ldx
< %(R) ! x*Pdx+(R) j x*Sin(x?)dx

1 £
Thus, by integral comparison test, (R)“ f (x)|dx converges if and only if (R)J-x””ﬁ dx

0 0
converges, which happens if and only if @ + § > - 1. As fis nonnegative, we know from

1 1
observation 2 that (L)j f= (R)j f and that these integrals are finite under the condition
0 0

a+p>-1.
Case3: (@ <-1,8<0.) Define f, = f,,,,. .- Clearly the f, are

continuous (and hence Riemann integrable and Lebesgue integrable) functions on [0, 1]
with f, = f pointwise a.e. Consequently we are free to apply techniques of elementary

calculus to f, to investigate the Riemann and Lebesgue integrability of f. Making a u-
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1 1
substitution with u = x” to the integral j f. = J-x”’Sin(xﬁ )dx and taking the limit as n
0

1/n

goes to infinity leads to the investigation of the integral L,B'f SmEu) du with
- u
1

r=1+ a—;l. From the hypothesis on @ and 5, we know that r < 1. Adopting the

Sin(u)

r

u

: 1 : :
procedure of exercise 9, we can convert — I du into a convergent alternating
T F

1
series under the condition 0 <7 < 1. Thus (R)J. f exists under the assumption f-1 <« <
0

- 1. On the other hand, mimicking the proof that jde is not Lebesgue integrable,
x
0

leads to the conclusion that LJ‘—SUZE”)
—BY u

B that satisfy the hypothesis of case 3.

du diverges as a Lebesgue integral for all @ and

30. To investigate whether f(x) = Z::l xn %e™™ is continuous we consider 2 cases.

Case 1: (@ > 0) Write f(x)= z::ln’“_l (nx)e™™ and apply the

nxe_’““ = Zm n~*"'e™" . Since the latter

n=1

Weierstrass M -test, which yields Z::ln_“_l sup .,
series is absolutely convergent for @ > 0, f must be the uniform limit of the sequence
fyv() = Z:’:l xn~%e™™ of continuous functions. Therefore fis itself continuous.

Case 1: (@ < 0) Observe that f (0) = 0 for all choices of @ € R and that

=

whenever x > 0 and @ < 0 we have f(x)= zm lxn"’e””‘ > lxe_’“‘ = lxe — =g(x). By
n= n= e X

I"'Hospital’s rule,

e"(1—-x) 1

e

hmx—)() g('x) = hmx—)()
Therefore,

limsup _ . f(x)2limsup _ . g(x)=1,
which shows that f cannot be continuous at x = 0 when a < 0.

For any « € R, we observe that fis the monotonically increasing limit of the sequence of
nonnegative functions f, (x) = Z:’:l xn"%e™™ . Therefore, by the monotone convergence

theorem,
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w . o o g
If=“§ xn “e ”x)dx=z Ixn Ye"dx = n“ .
n=1 n=1 n=1
0 0 0

Thus the integral converges if and only if the series z;n’“—z converges, which gives «

> -1 as the condition for membership in L' [0, co).

31. (a) Notice that f(x)= Z:;l (1/n)Exp(—n(x —n)*) is nonnegative on R and is the
limit of a monotonically increasing sequence of nonnegative functions

fyv(@)= z;v:l (1/n)Exp(—n(x —n)*) . Thus the monotone convergence theorem implies that

Jrestfe a3

The series is convergent and therefore fe L' (R).

(b) The function fis continuous on R if and only if it is continuous on every
interval of the form (-m, m), m € N. Set k, (x) = (1/n)Exp(—n(x —n)*) and notice that on
(-m, m)

1/n if n<m

sup Ik, | = Cnlmen)t
x e (-m, m) " (1/n)€ n(m-n) l]c n>m

Applying the Weierstrass M-test we obtain the estimate

sup Ifl<z Z “n(mn’ <Z Ze < oo

x € (=m, m) n=m+1 T n=t T =+l
The M-test shows that fis the umform limit of a continuous sequence of functions
fyv(@)= z;v:l (1/n)Exp(—n(x —n)*) on (-m, m). Therefore fis continuous on (-m, m) and

hence, continuous on R.

(c) We proceed to examine differentiability of f on (-m, m) and make the
preliminary observation that if the sequence f,,' is uniformly convergent, f,' must

converge to f* (For a justification of this fact, consult theorem 10.7. on page 152 in the
Carothers textbook).

Define g(x)=>." —2(x—n)Exp (-n(x—n)*) =" k,'(x) and notice that on (-m,
m)
2(2ne)™"? if n+2n)"?<m

' —
sup 1k, 'l = ()’ .
x € (-m, m) 2(7’l - m)e l]c n>m

Applying the Weierstrass M-test we obtain the estimate
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sup gl <22(2I’l€) V24 22(11 m)e """ " <22(2ne) gy Zne <oo

n=m+l1

x € (—=m, m) n=m+1

The M-test shows that g is the uniform limit of a continuous sequence of functions
fv' ()= ZN:I— 2(x—n)Exp(-n(x—n)*) on (-m, m). By theorem 10.7, g = f* and therefore f

is everywhere differentiable.



