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Lebesgue Integration 
 

The problems below are taken out of various textbooks on real variables, including 
“Real Analysis” by Elias M. Stein and Rami Shakarchi and “Real Analysis” by N. L. 
Carothers. Questions are also taken from real variables qualifying exams at CUNY 
Graduate Center. The problems are color-coded. The color green indicates that the 
problem came from a textbook and to the best of my knowledge was not featured on 
any qualifying exam. Yellow means that the problem was spotted in at least one 
qualifying exam. Red indicates that the problem or one just like it appeared in at least 
two qualifying exams. 
 

1. Prove that if f is integrable on R d and d > 0, then f(dx) converges to f(x) in the L 1 -
norm as d Ø 1. 
 
2. Suppose f is integrable on (-p, p] and extended to R by making it periodic of 
period 2p. Show that 

∫ ∫−
=

π

π I
dxxfdxxf )()(  

where I is any interval in R of length 2p. 
 

3. Suppose f œ L 1 [0, ¶) and for all x œ [0, ¶), |f (x)|< p/2. Show that  

Sin(f ) œ L 1 [0, ¶), and  

0))((
0

→∫
∞

dxxfSin
n

 as x Ø ¶. 

 

4. Find a sequence f n of nonnegative measurable functions such that lim ∞→n f n = 0, 

but lim ∞→n ∫ nf = 1. In fact, show that f n can be chosen to converge uniformly to 0. 

 

5. Let f  be measurable with f > 0 a.e. If 0=∫E f  for some measurable set E, show 

that m(E) = 0. 
 

6. Integrability of f on R does not necessarily imply the convergence of f (x) to 0 as  
x Ø ¶. 

(a) There exists a positive continuous function f on R so that f is integrable on R, 

but yet lim sup ∞→x f (x) = ¶. 

(b) However, if we assume that f is uniformly continuous on R and integrable, 

then lim ∞→||x f (x) = 0. 

 

7. Let g : [0, 1] Ø [0, 1] be the Cantor function. Calculate ∫
1

0
g . 
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8. Define f : [0, 1] Ø [0, ¶) by f (x) =  0 if x is rational and f (x) = n2  if x is irrational 
with exactly n = 0, 1, 2, … leading zeros in its decimal expansion. Show that f is 

measurable, and find ∫
1

0
f . 

 

9. Let f : (0, ¶) Ø R be the function 
x

xSin
xf

)(
)( = . Prove that the (improper Riemann 

integral ∫
∞

0
)( dxxf  exists, but that f is not Lebesgue integrable. (The common folklore 

is that the two integrals are the same when the Riemann integral exists; the example 
shows this can be false when the Riemann integral is “improper.”) 
 

10. Prove that 1))/(1(lim
00

=−= ∫∫ ∞→

∞
−

dxnxdxe
n

n

n

x . 

 

11. Compute ∫ −∞→

n
xn

n dxenx
0

2/))/(1(lim , justifying your calculations. 

 

12. Suppose f is integrable on [0, b], and 

dy
y

yf
xg

b

x∫=
)(

)(  for 0 < x § b. 

Prove that g is integrable on [0, b] and 

dyyfdxxg
bb

∫∫ =
00

)()( . 

 

13. Let 2/1)( −= xxf  for 0 < x < 1 and 0)( =xf  otherwise. Let {r n } be an enumeration 

of Q, and let ∑
∞

=

− −=
1

)(2)(
n

n

n
rxfxg . Show that: 

(a) g œ L 1 (R) and, in particular, g is finite a.e. 
(b) g is discontinuous at every point and is unbounded on every interval; it 

remains so even after modification on an arbitrary set of measure zero. 

(c) g 2 is finite a.e., but g 2 is not integrable on any interval. 
 

14. Suppose that E Õ [0, 2p] is measurable and that 0)( =∫
E

n
dxxCosx  for all  

n = 0, 1, 2, … Show that m(E) = 0 
 
15. Discuss, giving reasons, for each of the two cases [a, b] = [0, 1], and [a, b] = [-1, 1], 
whether or not it is possible for two different continuous functions f and g on [a, b] 

to have the same even moments. I.e., ∫∫ =
b

a

n
b

a

n
dxxgxdxxfx )()( 22  (n = 0, 1, 2, …). 
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16. If f , { nf } are Lebesgue integrable, and if { nf } increases pointwise to f , does it 

follow that ∫∫ → ff n ? Explain. 

 

17. Let x  denote the distance of x from the nearest integer. Suppose ∑
∞

=1n

na is an 

absolutely convergent series, and 0 < a < 1. Show that the series defining 

∑
∞

=

−
=

1

)(
n

n nxaxf
α
converges for almost all x œ R. 

 

18. If f œ L 1 [0, 1], show that )(xfx n œ L 1 [0, 1] for n =1, 2, … and compute 

∫∞→

1

0
)(lim dxxfx

n

n . 

 

19. Compute ∑∫
∞

=

−
0

2/

0
)())(1(

n

n
dxxCosxSin

π

. Justify your calculations. 

 

20. Let { nf }, { ng }, and g be integrable on R d , and suppose that ff n → a.e., gg n →  

a.e., nn gf ≤  a.e., for all n, and that ∫ ∫→ gg n . Prove that f  œ L 1 (R d ) and that 

∫ ∫→ ff n . (This is a variation of Lebesgue dominated convergence theorem.) 

 

21. Let { ng } be a sequence of Lebesgue integrable functions on R d and suppose that 

gg n →  a.e. and ∫ ∫→ gg n where g is also Lebesgue integrable on R d . Answer the 

following: 

(a) If A n  is an increasing sequence of measurable sets (i.e. A n  Õ A 1+n ) with 

∞→nlim A n  = R
d  and )(xg n  ¥ 0 for almost every x, does it follow that  

∫∫ → gg

nA

n  

(b) How about if we drop the assumption that ng  is nonnegative a.e.? 

 

22. Let { nf } be a sequence of integrable functions and suppose that gf n ≤||  a.e., for 

all n, for some integrable function g. Prove that 

∫∫∫∫
∞→∞→∞→∞→

≤≤≤ )suplim(supliminflim)inflim( n
n

n
n

n
n

n
n

ffff . 

 
23. Let f be measurable and finite a.e. on [0, 1]. 

(a) If 0=∫E f  for all measurable E Õ [0, 1] with m(E) = ½, prove that f = 0 a.e. on 

[0, 1]. 
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(b) If f > 0 a.e., show that inf{ ∫E f : m(E) ¥ ½} > 0. 

 

24. Show that 0lim

1

0

=∫∞→ nn f  where )(xf n  is: 

 (a) 
221 xn

nx

+
 

 (b) 
221 xn

xn

+
 

 (c) 
221

)ln(

xn

xnx

+
 

 (d) 
22

2/3

1 xn

xn

+
 

 
25. Find: 

 (a) ∫
∞

∞→ +
0

21

)(
lim dx

nx

eSin x

n
     (b) ∫ +∞→

1

0

2/321

)(
lim dx

xn

xnCos

n
 

 

26. Fix 0 < a < b, and define nbxnax

n ebeaxf
−− −= 22)( . Show that ∑∫

∞

=

∞

∞=
1 0

||
n

nf  and 

∫ ∑∫∑
∞ ∞

=

∞∞

=

≠








0 1 01 n

n

n

n ff . 

 
27. Compute the following limits, justifying your calculations: 

 (a) ∫
∞

∞→ +
0

2 )1(

)/(
lim dx

xx

nxnSin

n
 

 (b) ∫ +

+

∞→

1

0

2

2

)1(

1
lim dx

x

nx
nn

 

 (c) ∫
∞

∞→ +
0

)/1(

)/(
lim dx

nx

nxSin
nn

 

 (d) ∫
∞

∞→ +
a

n
dx

xn

n
221

lim  

 

28. Let E be a measurable subset of R d with m(E) > 0 and let f : E Ø [0, ¶] be a 
measurable function. Prove that 

∫∫ =+
∞→ EEn

fnfn )/1ln(lim  

∞=+∫∞→ En
nfn ))/(1ln(lim 2/1
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29. Let a, b œ R, and define )()( βα xSinxxf = , 0 < x § 1. For what values of a and b is 

f: (i) Riemann integrable (in the sense that ∫+→

1

0
)(lim

ε
ε

dxxf  exists)? (ii) Lebesgue 

integrable? 
 

30. For which a œ R is ∑
∞

=

−−=
1

)(
n

nx
exnxf

α continuous on [0, ¶)? in L 1 [0, ¶)? 

 
31. Let  

∑
∞

=

−−=
1

)( 2

)/1()(
n

nxn
enxf  

for x œ R.  

(a) Is f in L 1 (R)? 
(b) Is f continuous on R? 
(c) Is f differentiable on R? 

 
Solutions: 
 
1.  We can use the fact that continuous functions with compact support are dense in 

L 1 (R d ) to establish the claim. In particular, let g be a continuous function on a compact 
support E that satisfies 

∫ <− εdxxgxf |)()(| . 

Then for d > 0, 

εδδδδ dd dxxgxfdxxgxf −−

∫ ∫ <−=− |)()(||)()(| . 

And we have 

dxxfxgdxxgxgdxxgxfdxxfxf ∫∫∫ ∫ −+−+−≤− |)()(||)()(||)()(||)()(| δδδδ  < 

∫ −++− dxxgxgd |)()(|)1( δεδ . 

Thus, it suffices to prove 

0|)()(|lim
1

=−∫→
dxxgxg δ

δ
. 

To accomplish this, let Q be a closed cube big enough to contain E and 2E. This closed 

cube Q must then contain all sets of the form d 1− E whenever d > ½ and therefore the 

functions k δ (x) = |)()(| xgxg −δ  are bounded above by 2M, where  

M = sup{|g(x)|: x œ E}, and supported on Q. By the bounded convergence theorem, we 
then have 

0|)()(|lim|)()(|lim
11

=−=− ∫∫ →→
dxxgxgdxxgxg δδ

δδ
. 

 
2. We may assume without loss of generality that I is of the form (a -p, a + p], where  



 6

a = 2pk + r, k œ Z, and 0 § r < 2p.  It is easily derived from the properties of measurable 

sets that for any Lebesgue integrable function g on R d , one has 

∫∫ +=
dd

RR

dxhxgdxxg )()(  

for h œ R d . 
In particular, if g: (c, d) Ø R, then 

∫∫ ∫ =++==
R

dc

d

c
R

dc dxhxhxgdxxxgdxxg )()()()()( ),(),( χχ

∫ ∫
−

−
−− +=+

R

hd

hc
hdhc dxhxgdxxhxg )()()( ),(χ  

Thus,  

∫∫∫∫
+

−

++

−+

+

−
+===

π

π

ππ

ππ

π

π
π

r

r

rk

rk

a

aI
dxkxfdxxfdxxfdxxf )2()()()(

2

2
 (1) 

Since f is periodic with period 2p, we get from (1) 

∫∫
+

−
=

π

π

r

rI
dxxfdxxf )()(        (2) 

Finally, we break the integral in (2) to obtain 

=+== ∫∫ ∫∫
++

− −

π

π

π

π

π

π

rr

r rI
dxxfdxxfdxxfdxxf )()()()(  

∫∫∫ −

−

−−
=++

π

π

π

π

π

π
π dxxfdxxfdxxf

r

r
)()2()( . 

 
3. Recall that Sin(x) is a Lipschitz function that satisfies |Sin(x) – Sin(y)|§ |x – y|. 
Therefore |Sin(f (x))| = |Sin(f (x)) – Sin(0)| § |f (x) – 0| = |f (x)|. By the assumption on 
f and monotonicity of the Lebesgue integral,  

∞<≤ ∫∫
∞∞

00
|)(||))((| dxxfdxxfSin  

This shows that Sin(f ) œ L 1 [0, ¶). 
The hypothesis that |f (x)|< p/2 implies |Sin(f (x))| < 1 for all x. Consequently, 

0))((lim =
∞→

xfSin
n

n
 for all x œ [0, ¶). 

Moreover, since |)(||))((||))((| xfxfSinxfSin
n ≤≤ , we may apply Lebesgue 

dominated convergence theorem to conclude that 

0))((
0

→∫
∞

dxxfSin
n

 as x Ø ¶. 

 

4. Define )(
1

)( ),0( x
n

xf nn χ= , where ),0( nχ  is the indicator function of the interval (0, n). 

Clearly 
n

xf n

1
|0)(| ≤−  and therefore 0→nf  uniformly. However, ∫ nf = n

n

1
 = 1. 
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5. Since 0>f a.e. the set E can we written as a union U
∞

=

∪
1

0

n

nEE where 

}0)(:{0 ≤∈= xfExE is of measure 0 and }/1)(:{ nxfExEn ≥∈= . Define nEn
n

f χ
1

= . 

Then, by monotonicity of the integral, 

)(
1

0 n
E

n
E

Em
n

ff =≥= ∫∫ . 

Thus m( nE ) = 0 and therefore m(E) § m( 0E ) + ∑
∞

=1

)(
n

nEm  = 0. 

 
6.  (a) Define for each n œ N 






















++∈−−−









++∈







+∈−

=

otherwise

nnnnxnnxn

nnnnxn

nnnxnxn

xf

0

)/1(,)/1(
3

2
))/1((3

)/1(
3

2
,)/1(

3

1

)/1(
3

1
,)(3

)(

3334

33

34

 

For convenience, a typical segment of the graph of f is displayed below: 

 
Clearly, f is continuous on R. As n approaches infinity, the horizontal peak y = n 

becomes unbounded. Hence lim sup ∞→x f (x) = ¶. 

Finally, to see that f is integrable, it suffices to note that f ¥ 0 and that the hill on the 
interval [n, n + 1] is bounded above by the function  

])/1(,[ 3
nnn

n
+

χ . 

Thus  

∑∑∫
∞

=

∞

=

∞<=≤
1

2
1

3

11

nn n
n

n
f  

)(3 4 nxny −=

))/1((3 34 nnxny −−−=

ny =
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 (b) Assume that f is uniformly continuous and Lebesgue integrable on R. If we 

can prove that lim ∞→||x f (x) = 0 in the special case when f ¥ 0, the general result will 

follow from the decomposition f = f + — f − , where f + = max{f, 0} and f − = max{-f, 0}. 

To that end, notice that if f ¥ 0 is uniformly continuous, but lim ∞→||x f (x) ∫ 0, we may 

find an e > 0 and a sequence x n  such that | x n |> n and f (x n ) ¥ e. Because f is uniformly 

continuous, we may also find a d > 0 such that f (x) > e/2 for all x œ (x n - d,  x n + d). We 

then have 

∞=≥∑∫
∞

=

δ
ε

2
21n

f . 

Hence all integrable, uniformly continuous functions must vanish at infinity. 
 
7. Recall that g is the extension of the function c : D Ø [0, 1] defined on the Cantor set D. 
The function c is given by 

∑
∞

=

=
1 2

)(
n

n

na
xc  

where x œ D has the ternary base representation )...2)...(2)(2.(0 21 naaa  (mod 3) and ia  = 0 

or 1.  The function g is consequently defined by g(x) = sup c(y), where the supremum is 
taken over all y œ D and y § x. 
We can write 

∫∫∫∫
∆−∆−∆

=+=
]1,0[]1,0[

1

0
gggg  

because D is a set of measure 0 and Lebesgue integrals vanish on such sets. 
Notice that [0, 1] – D is the union of disjoint open intervals and that g is constant on each 

interval. Denote by L n the collection of the 
12 −n  disjoint open intervals in [0, 1] – D of 

length n−3 that were deleted from [0, 1] on the n th  step of the construction of the Cantor 

set. Let x jn, ; 1 § j § 12 −n denote the left-endpoints of the intervals in L n . Then  

∑∑
= =

∞→

−

=
N

n j

Ijn
N

n

jn
xgg

1

2

1

,

1

,
)(lim χ

 

is the limit of an increasing sequence of step functions. Thus, by the monotone 
convergence theorem, 

∑ ∑∫
∞

= =∆−

−

=
1

2

1

,

]1,0[

1

)(
3

1

n j

jnn

n

xgg
. 

To compute 

∑
−

=

12

1

, )(

n

j

jnxg
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observe that x jn,  is of the form )2)...(2)(2.(0 121 −naaa  (mod 3) where ia  = 0 or 1. Hence, 

=+= ∑ ∑∑
=

−
−

== −

−

1,0:),...,(

1
1

1

2

1

,

11

1

2

1
2

2
)(

in

n

aaa
n

n
n

i
i

i

j

jn

a
xg

 

∑ ∑
=

−

=−

+
1,0:),...,(

1

111
2

1

2
in aaa

n

i
i

ia
 

where the sum is taken over all 12 −n  possible vectors ),...,(
11 −n

aa with entries 0 or 1. 

Let 

∑ ∑
=

−

=−

=
1,0:),...,(

1

111
2

in aaa

n

i
i

i
n

a
S

 

Then  

=







++= ∑ ∑∑ ∑

=

−

=
−

=

−

= −− 1,0:)1,,...,(

2

1
1

1,0:)0,,...,(

2

1 2121
2

1

22
inin aaa

n

i
ni

i

aaa

n

i
i

i
n

aa
S

 

2

1
2

2

1
2 11

2

11 +=++ −−

−
−− nn

n

nn SSS
 

Clearly, 01 =S  and the closed formula for nS  is therefore 
2

12
2

2

1 12

0

−
==

−−

=

∑
nn

k

k

nS . 

It follows that 

2
2

1

, 2
2

1
)(

1

−

=

=+=∑
−

n

n

j

jn Sxg

n

 

Thus, 

2

1

3

2

6

1

3

2
1

11

2

]1,0[

=







==

−∞

=

∞

=

−

∆−

∑∑∫
n

nn
n

n

g
 

 

8. For each n = 0, 1, 2, … define E n = [
110 −−n , n−10 ] … (R—Q). Then it is clear that the 

function f is given by 

∑
∞

=

=
0

2
n

E

n

n
f χ  
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where nEχ  is the indicator function of E n . Since f is the limit of simple functions and 

therefore the pointwise limit of measurable functions, f is measurable. Applying the 
monotone convergence theorem, we obtain 

∑∑ ∫∫
∞

=
+

∞

=

===
0

1
0

1

0

1

0 8

9

10

2
92

n
n

n

n

E

n

n
f χ . 

 

9. There are several ways to prove that 
x

xSin
xf

)(
)( =  is Riemann integrable over (0, ¶). 

One method is to calculate the integral’s exact value by defining the function  
g : [0, ¶) Ø [-¶, ¶] which is given by 

∫ ∫∫
∞ ∞

−
∞

− ==
00

)(
)(

)(
t

xyxt
dydxxSinedx

x

xSin
etg . 

If we can express the right-hand-side of the formula in a familiar form of a known 

continuous function, the value ∫
∞

=
0

)()0( dxxfg  will be the desired result. To that end, 

let t > 0 and set k, h : [0, ¶) µ (t, ¶) to be the functions )(),( xSineyxk
xy−=  and 

xeyxh
xy−=),(  respectively. Then |k| § h and since h is nonnegative, we may apply 

Tonelli’s theorem to establish that 

∞<== ∫ ∫∫ ∫
∞ ∞

−
∞ ∞

t
xdydxedydxyxh

t

xy

t

1
),(

00
 

and that therefore h œ L 1 ([0, ¶) µ (t, ¶)). This implies that k œ L 1 ([0, ¶) µ (t, ¶)) as well 
and by Fubini’s theorem, we may change the order of integration to obtain 

)(tan
21

1
)()()( 1

200
tdy

y
dxdyxSinedydxxSinetg

tt

xy

t

xy −
∞∞ ∞

−
∞ ∞

− −=
+

=== ∫∫ ∫∫ ∫
π

 

Hence g is continuous and g(0) = p/2. 
Another slick method to prove the integral exists (borrowed from Carothers) is to write 

dx
x

xSin
∫

∞

0

)(
 as an alternating series: 

dx
x

xSin
dx

x

xSin

n

n

n

∑ ∫∫
∞

= −

∞

=
1 )1(

0

)()(
π

π

 

dx
x

xSin

n

n

n

n∑ ∫
∞

= −

−−=
1 )1(

1 |)(|
)1(

π

π

 

dx
nx

xSin

n

n∑ ∫
∞

=

−

−+
−=

1 0

1

)1(

|)(|
)1(

π

π
. 
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To show that the series converges, we only have to show that the terms tend 
monotonically to zero. But |Sin(x)|/(x + (n — 1)p) clearly decreases as n increases (for 
x fixed), and 

0
1

1

)1(

|)(|

0

→
−

≤
−+∫ n

dx
nx

xSin
π

π
. 

To see that the Lebesgue integral does not exist, observe that the assertion “f is 

Lebesgue integrable on (0, ¶)” is equivalent to the assertion “f is in L 1 (0, ¶)”. That is, 

Lebesgue integrability implies the integrability of the function |f |= f + + f −  and hence 

the integrability of f + = max{f, 0} and f − = max{-f, 0}. It therefore suffices to show that f +  
isn’t integrable. 

For k = 0, 1, 2, … let A k = [2kp, (2k + 1) p] and B k = [2kp + p/6, (2k + 1) p — p/6] and 

define 

A = U
∞

=0k

kA  and B = U
∞

=0k

kB . 

Then BA fff χχ ≥=+  and since Sin(x) ¥ ½ and 1/x ¥ 1/[(2k + 1)p —p/6] on B k  ,  

ππ 512

3)(

+
≥

kx

xSin
. 

Therefore by the monotone convergence theorem and the monotonicity of the Lebesgue 
integral, we have  

kB

k

BA
k

fff χ
ππ

χχ ∫∑∫∫ ∫
∞

=

∞
+

+
≥≥=

0
0 512

3
 

∞=
+

=
+

=∑ ∑
∞

=

∞

=0 0 512

2

512

)(3

k k

k

kk

Bm

ππ . 

 

10. By elementary calculus xn

n
enx

−

∞→
=− ))/(1(lim  for every fixed x. Thus the sequence of 

functions )())/(1()( ),0( xnxxf n

n

n χ−=  converges pointwise to x
e

− on (0, ¶). Clearly 

each nf  is nonnegative. Furtheremore 

1

11

1

1

1
1

1

1

1
1

)(

)(
+

++

+









−










+
−









−=









−










+
−

=
n

n

n

n

n

n

n

x

n

x

n

x

n

x

n

x

xf

xf
 

1

))(1(
11

+










−+
+








−=

n

xnn

x

n

x
 

=








−+

+
+








−>

))(1(

)1(
11

xnn

xn

n

x
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1
)(

11 =








−
+








−=

xn

x

n

x
, 

where in the above estimation we have used Bernoulli’s inequality which asserts that 

naa n +>+ 1)1( whenever a > -1. Hence we see that 1+< nn ff . Consequently, by the 

monotone convergence theorem 

∫∫∫∫ −====
∞→

∞
∞→

∞
∞→

∞
−

n
n

n
n

n
n

n

x
dxnxffdxe

0
),0(),0(

0
))/(1(limlimlim1 . 

(Remark: it is important to note that ∫ −
n

n
dxnx

0
))/(1(  can be interpreted as either a 

Riemann or Lebesgue integral, because the two notions agree for all Riemann integrable 

functions on bounded intervals. The improper Riemann integral ∫
∞

−

0
dxe

x  also agrees 

with its Lebesgue counterpart, because x
e

− is bounded and nonnegative; It can be 
shown via the monotone convergence theorem that the two notions agree whenever this 
is the case.) 
 
11. As in the previous problem, it is easy to see that the sequence of functions 

2/))/(1()( xn

n enxxf −=  is nonnegative and increasing and so is the sequence ),0( nnf χ . 

By elementary calculus, 
2/2/

),0( )()(lim xxx

nn
n

eeexxf
−−

∞→
==χ . Therefore the application of 

the monotone convergence theorem yields 

2lim))/(1(lim
0

2/

),0(
0

2/ ===− ∫∫∫
∞

−

∞→∞→
dxefdxenx

x

n

n
n

n
xn

n
, 

where the Riemann and Lebesgue integrals in the above calculation agree as explained 
in the remark at the end of the previous problem. 

 

12. By writing f = f + — f − , where f + = max{f, 0} and f − = max{-f, 0}, we can reduce the 
problem to the special case when f ¥ 0. 
The integral 

∫ ∫∫ =
b b

x

b

dydx
y

yf
dxxg

00

)(
)(  

is an iteration of the R 2 integral 

∫
2

),(
R

dydxyxk  

where ),(
)(

),( yx
y

yf
yxk Eχ=  and the set E is the triangle in R 2  defined by 

E = {(x, y) œ R 2 : 0 < x < b, x § y < b} = {(x, y) œ R 2 : 0 < y < b, 0 < x < y} 
By Tonelli’s theorem, we can write 
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dxdy
y

yf
dxdyyxkdydxyxk

R R

b y

R

∫ ∫ ∫ ∫∫ ==
0 0

)(
),(),(

2

. 

 

Since dx
y

yfy

∫0
)(

 is Riemann integrable, the value of the Lebesgue integral agrees with 

the Riemann integral and equals f(y). 
Thus, 
 

∫∫ =
b

R

dyyfdydxyxk
0

)(),(
2

 

which shows that k(x, y) is Lebesgue integrable. By Fubini’s theorem, it then follows 
that  

∫∫ =
b

R

dxxgdydxyxk
0

)(),(
2

 

In particular, g is Lebesgue integrable and 

∫∫ =
bb

dxxgdyyf
00

)()(  

 

13. (a) The sequence of functions ∑
=

− −=
N

n

n

n

N rxfxg
1

)(2)(  is nonnegative and 

increasing to g. Denoting by nf  the function )()( nn rxfxf −= we therefore obtain via the 

monotone convergence theorem 

∑ ∫∑∫∫∫∫
∞

=

−
∞

=

−

∞→∞→
====

11

22limlim
n R

n

n R

n

n

R

N
N

N

R
N

R

ffggg  

where we used the invariance under translation of Lebesgue integrals to conclude that 

∫∫ =+
RR

n xfrxf )()( . Clearly the Lebesgue integral ∫
R

f  agrees with the improper 

Riemann integral 2

1

0

2/1 =∫
−

dxx  and therefore  

222
1

== ∑∫
∞

=

−

n

n

R

g  

In particular, g (x) < ¶ a.e. x. 
 
 (b) g is finite a.e. and therefore to show that g is discontinuous at every point and 
unbounded in every interval, it suffices to prove that the oscillation at every point 
(relative to the subset of R on which g is finite) equals infinity. More precisely, let  
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E ∞ = {x œ R : g (x) = ¶}. Then m(E ∞ ) = 0 and we may pick a point a œ F = R— E ∞ .  

Let I δ  = (a—d, a + d) where d > 0 is small. Define w g (a : I δ ) = sup |g(x) – g(y)| where the 

supremum is taken over all x, y œ F … I δ . Notice that we may pick some rational number  

nr  in I δ  and since  

∞=−
→

)(lim n
rx

rxf
n

 

it follows that for each integer m, there is an interval ( nr , mx ) Õ I δ  such that 
n

n mrxf 2)( >− for all x œ ( nr , mx ) … F. Clearly then, g(x) ¥ mrxf n

n >−− )(2 . Hence 

sup {|g(x) – g(y)|: x, y œ F … I δ } ¥  sup {|g(x) – g(a)|: x œ F … I δ } > m and w g (a : I δ ) = ¶. 

Thus the oscillation of g at a relative to F, w g (a) = 
0

lim
→δ

w g (a : I δ ) = ¶ as desired. 

It is interesting to note that the removal of a larger set E  E ∞ of measure 0 will note 

tame the oscillation at the remaining points, because R – E will remain a dense subset of 

R. Thus, we would still be able to choose x œ ( nr , mx ) … R – E satisfying 

g(x) ¥ mrxf n

n >−− )(2 . 

 

 (c) Clearly 2g is finite whenever g is finite. Hence ∞<)(2 xg  a.e. x. Since the 

terms in the series of g are nonnegative, the following inequality may be used to 

estimate the integral of 2g : 

)()()()()()()()(
1

2

1 111

2 ∑∑∑∑∑
∞

=

∞

=

∞

=

∞

=

∞

=

−≥−−=







−








−==

n

n

n m

mn

m

m

n

n rxfrxfrxfrxfrxfxgxgxg  

In any interval (a, b), there is a rational number nr  satisfying ( nr , c) Õ (a, b), where  

c = min{b, nr + 1}. Consequently 

∫ ∫ ∫ ∫∫∑
−∞

=

=−≥−≥≥
),( ),( ),( 0

2

),(

2

1

222 )()()(
ba cr cr

rc

cr

n

k

k

n n

n

n

dxxfrxfrxfgg
 

And since 

∞== ∫∫
−

−

− nn rcrc

dxxdxxf
0

1

0

2
)(

 

2g is not integrable on any interval. 

 
14. Since Cos(x) is a continuous function, by Weierstrass’s theorem there exists a 

sequence of polynomials np which converges uniformly to Cos(x) on the interval [0, 2p]. 

Specifically, for any e > 0, there is some N œ N such that  

|)()(|sup
]2,0[

xCosxpCosp n
x

n −=−
∈ π

 < e 

whenever n ¥ N. 
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Since 

∫∫∫ −≤−
E

n

EE

n dxxCosxCosxpdxxCosdxxCosxp |)(||)()(|)()()( 2
 

πεπεεεε 2])2,0([)(|)(| =≤=≤≤ ∫∫ mEmdxxCos
EE

 

it follows that 

∫∫ =
∞→

EE

n
n

dxxCosdxxCosxp )()()(lim 2
. 

From the hypothesis that 0)( =∫
E

n
dxxCosx  and the additivity of the integral we are lead 

to conclude 0)(2 =∫
E

dxxCos . Now if m(E) > 0, we may pick a closed subset  

F Õ E—{p/2, 3p/2} with the property m(F) > ½ m(E). Then F is compact as it is closed 

and bounded and )(2 xCos attains a minimum value d > 0 on F. By monotonicity of 

integration we then have 

0)(
2

)()()(0 22 >>=≥≥= ∫∫∫ EmFmdxxCosdxxCos
FFE

δ
δδ  

which is an obvious contradiction. Thus m(E) = 0 as desired. 
 

15.  Since ∫∫ =
b

a

n
b

a

n
dxxgxdxxfx )()( 22  if and only if 0))()((2 =−∫

b

a

n
dxxgxfx , it suffices to 

investigate whether 0)(2

∫ =
b

a

n
dxxfx (for n = 1, 2, …) implies that f (x) = 0 for all x œ [a, b]. 

The Case [a, b] = [0, 1]: Suppose 0)(
1

0

2

∫ =dxxfx
n  for n = 1, 2, … Extend f to a continuous 

even function h : [-1, 1] Ø R by defining 





−∈−

∈
=

]0,1[)(

]1,0[)(
)(

xxf

xxf
xh  

Then  

0)(2)()()(
1

0

2
1

0

2
0

1

2
1

1

2 ==+−= ∫∫∫∫ −−
dxxfxdxxfxdxxfxdxxhx

nnnn
 

and 

0)()()()()(
1

0

12
0

1

12
1

0

12
0

1

12
1

1

12 =+=+−−= ∫∫∫∫∫
+++

−

+

−

+
dxxfxdxxfxdxxfxdxxfxdxxhx

nnnnn
. 

In particular, h has both its even and odd moments equal zero. By Weierstrass’s 

theorem, there is a sequence of polynomials np which converges uniformly to h on  

[-1, 1]. Thus 

∫∫ −−∞→
==

1

1

2
1

1
)()()(lim0 dxxhdxxhxpn

n
. 

And since 2
h  is nonnegative, 2

h  = 0 a.e. and hence h = 0 a.e. However h is continuous 
and takes the value 0 on a dense subset of [-1, 1], which leads us to conclude that h is 
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identically zero on [-1, 1]. This clearly implies that f (x) = 0 for any x œ [0, 1]. Thus, the 
even moments of a continuous function on [0, 1] determine the function. 
The Case [a, b] = [-1, 1]: Let xxf =)( . Then f is not identically 0, but  

0)(
1

1

12
1

1

2 ==∫∫ −

+

−
dxxdxxfx

nn
. 

Thus distinct continuous functions may agree on their even moments. 
 

16. The sequence of Lebesgue integrable functions { nf } increases pointwise to an 

integrable function f . Therefore, the sequence { 1ff n − } of nonnegative integrable 

functions increases pointwise to the nonnegative integrable function 1ff − . By the 

monotone convergence theorem we then have 

∫∫ −→− )()( 11 ffff n . 

Thus, 

∫∫∫∫∫∫ =+−→+−= ffffffff nn 1111 )()( . 

 

17.  Observe that the function ∑
∞

=

−
=

1

)(
n

n nxaxf
α
 is periodic with period 1. That is, 

)()()(
111

xfnxanmnxamxnamxf
n

n

n

n

n

n ==+=+=+ ∑∑∑
∞

=

−
∞

=

−
∞

=

− ααα
, because the number 

nx is closest to the integer k if and only if the number nx + nm is closest to the integer k 

+ nm. For n œ Z, let E n= {x œ [n – 1, n]: f (x) = ¶} and set E = {x œ R: f (x) = ¶}. If we can 

prove that m(E 1 ) = 0, it will follow by periodicity that m(E n) = 0 for all n and hence that 

∑
∞

−∞=

=≤
n

nEmEm 0)()( . 

By the monotone convergence theorem 

∑ ∫∫
∞

=

−
=

1

1

0

1

0
n

n dxnxaf
α

. 

Let g : [0, 1] Ø R be the function xxg =)(  . Then 





∈+−

∈
=

]1,2/1[1

]2/1,0[
)(

xx

xx
xg  

and  

∫∫∫∫
−−−−

+−+==
1

2/1

2/1

0

1

0

1

0
)1()( dxxdxxdxxgdxx αααα

. 

Since 0 < a < 1, the improper Riemann integrals ∫
−

2/1

0
dxx

α  and ∫
−+−

1

2/1
)1( dxx

α  exist and 

both equal to 
α

α

−

−

1

2 1

. Hence 
α

α
α

−
=∫

−

1

2
)(

1

0
dxxg  and this value agrees with the Lebesgue 
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integral ∫
−

1

0

α
g , because all improper nonnegative Riemann integrable functions are also 

Lebesgue integrable and of the same value. 

We use the periodicity of g to evaluate ∫ ∫
−−

=
1

0

1

0
)( dxnxgdxx

αα
 as follows: 

Note that the graph of g(nx) is a repetition of the graph of g(x) over each interval of the 
form [(k – 1 )/n, k/n]. For convenience, the graphs of g(x) and g(3x) below illustrate the 
general situation. 

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

 
 
 
 
 

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

 
 
 
 

It follows that 

α

α
ααα

−
=== ∫∫∫

−−−

1

2
)()()(

1

0

/1

0

1

0
dxxgdxnxgndxnxg

n

. 

Hence  

Graph of g(x) 

Graph of g(3x) 

Interval [0, 1] 

 [0, 1/3]  [1/3, 2/3]  [2/3, 1] 
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∞<
−

== ∑∑ ∫∫
∞

=

∞

=

−

11

1

0

1

0 1

2

n

n

n

n adxnxaf
α

α
α

. 

And since the integral of the nonnegative function f exists, it follows that m(E 1 ) = 0 as 

desired. 
 

18. The assumption f œ L 1 [0, 1] implies f is finite a.e. and therefore for almost every x œ 

[0, 1], 0)(lim =
∞→

xfx
n

n
. Since fxfx n ≤)(  œ L 1 [0, 1], we may apply the Lebesgue 

dominated convergence theorem to conclude that 

0)(lim)(lim
1

0 0

1

0
== ∫∫ →∞→

dxxfxdxxfx n

n

n

n
. 

 

19. To calculate ∑∫
∞

=

−
0

2/

0
)())(1(

n

n
dxxCosxSin

π

, it would be convenient to interchange the 

integral with the sum. That is to say, if we can justify the equality 

∫ ∑∑∫
∞

=

∞

=

−=−
2/

0
00

2/

0
)())(1()())(1(

ππ

n

n

n

n
dxxCosxSindxxCosxSin , 

the problem will reduce to integrating a geometric series that converges for all  

x œ (0, p/2) to the function 
)(

)(

xSin

xCos
 and hence  

2
)(

)(
)())(1(

1

0

2/1
2/

0

2/

0
0

===− ∫∫∫ ∑ −
∞

=

dxxdx
xSin

xCos
dxxCosxSin

n

n
ππ

, 

where we use the agreement of the Lebesgue and improper Riemann integrals for 
nonnegative Riemann integrable functions. 

Finally, to justify interchanging the sum with the integral, define Nf , f : (0, p/2) Ø R by 

∑
=

−=
N

n

n

N xCosxSinxf
0

)())(1()(  and ∑
∞

=

−=
0

)())(1()(
n

n
xCosxSinxf . Clearly the Nf  are 

nonnegative and fff NN →≤ +1 . Therefore, by the monotone convergence theorem, we 

have 

∑∫∫∫∫
=

∞→∞→∞→
−===

N

n

n

N
N

N
N

N
dxxCosxSindxxfdxxfdxxf

0

2/

0

2/

0

2/

0

2/

0
)())(1(lim)(lim)(lim)(

ππππ

 

∑∫
∞

=

−=
0

2/

0
)())(1(

n

n
dxxCosxSin

π

. 

And the desired result is proved. 
 

20. Define for each n and N the set n

NE  = {x œ R d : |x| § N, )(xgn  § N} and set NE  = {x 

œ R d : |x| § N, )(xgn  § N for all n}. That is I
∞

=

=
1n

n

NN EE . Several observations are in 

place. 
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Observation 1: ggn →  a.e., where the ng  are nonnegative and therefore 0 § g(x) 

for almost every x. Furthermore, g(x) § N whenever x œ NE . 

Observation 2: The sets NE  are increasing ( 1+⊂ NN EE ) and since ggn →  a.e., the 

sequence { )(xgn } is Cauchy and therefore bounded for almost every x. Thus the NE  

must increase to a measurable subset E Õ R d where m(R d – E) = 0. 

Observation 3: By hypothesis, | )(xf n | § )(xgn a.e. and ff n → a.e., and 

therefore for almost every x, |)(|lim)(lim)( xfxgxg nnnn ∞→∞→ ≥=  = | )(xf |. In 

particular, since g is integrable, so must be f and for all x œ NE , | )(xf n |§ N and 

| )(xf |§ N. 

Observation 4: For each N  

0)(lim =−∫∞→

NE

nn gg  

This follows from the bounded convergence theorem, since ggn →  a.e., NE  is a 

bounded set, and |)()(| xgxgn −  § 2N for all x œ NE . Furthermore, using observation 3, 

we may also conclude that 

0||lim =−∫→∞

NE

nn ff
 

 Observation 5: By observation 4 and the hypothesis ∫ ∫→ gg n , it follows that 

0)(lim)(lim)(lim =−−−=− ∫∫∫ →∞→∞→∞

N
c
N E

nnnn

E

nn gggggg
 

We are now ready to prove the main result by estimating ∫∫∫ −=− )( ffff nn . 

∫∫∫∫ −+−=−≤−
c
NN E

n

E

nnn ffffffff ||||||)(
 

∫∫∫ ++−≤
c
N

c
NN EE

n

E

n ggff ||
 

∫∫∫ +−+−=
c
N

c
NN EE

n

E

n gggff 2)(||
 

∫∫∫ +−+−≤
c
N

c
NN EE

n

E

n gggff 2|)(|||
 

Since g is integrable on R d , the integral of g decays to zero outside a large bounded set. 
More precisely, for 0>ε we may pick N large enough so that 
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4

ε
<∫

c
NE

g
 

Holding this N fixed, we note from observations 4 and 5 that for large n 

4
||

ε
≤−∫

NE

n ff
  

and 

4
||

ε
≤−∫

c
NE

n gg
 

Hence ε≤−∫ )( ff n , from which the assertion ∫∫ → ff n  readily follows. 

 
21.  (a) An easy application of exercise 20 shows the statement to be true: 
Set 

nAnn gf χ=  

and rename f = g. Observe that ff n →  and | )(xf n | § )(xgn a.e. By hypothesis, ggn →  

a.e. and ∫ ∫→ gg n , so all the necessary conditions are satisfied for the modified 

Lebesgue dominated convergence theorem to apply. 
 

 (b) The assumption that ng  is nonnegative a.e. is vital and cannot be dropped. To 

see this define ng : R Ø R and g: R Ø R by 

)0,[],0[

11
nn

een
nn

g
−

−= χχ  

and 

g = 0 
respectively. Also define A n  = [-n, 

n
e ] for n = 1, 2, … 

Clearly ggn →  and this convergence is even uniform. Since ∫ =−= 0
n

e

n

e
g

nn

n , we have 

the condition ∫ ∫→ gg n  satisfied as well. Notice however that 

∞ →−=−=
∞→

−

∫∫∫
nas

n

n

e

A

n
n

e

nn
g

n

n

1
11

0

0

. 
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22. Define the functions k
nk

n fl
≥

= inf , k
nk

n fu
≥

= sup  and set n
n

fl
∞→

= inflim  and n
n

fu
∞→

= suplim . 

Evidently, 

(i) 1+≤ nn ll  and lln
n

=
∞→

lim , 

(ii) 1+≥ nn uu  and uun
n

=
∞→

lim , 

,and since gf k ≤|| for all k, 

(iii) gln ≤||  and gun ≤||  a.e. for all n. 

Since g is integrable, the application of Lebesgue dominated convergence theorem leads 
to the conclusions 

)1(limlim)inflim( ∫∫∫ ∞→∞→∞→
== n

n
n

n
n

n
llf  

and 

)2(limlim)suplim( ∫∫∫ ∞→∞→∞→

== n
n

n
n

n
n

uuf . 

Monotonicity of the integral and the fact that nnn ufl ≤≤ for every n imply 

∫∫∫∫∫∫ ∞→∞→∞→∞→∞→∞→
=≤≤≤= n

n
n

n
n

n
n

n
n

n
n

n
uuffll limsuplimsupliminfliminflimlim , 

where we use the fact that ∫ nl and ∫ nu converge in deriving ∫∫ ∞→∞→
= n

n
n

n
ll inflimlim  and 

∫∫ ∞→∞→

= n
n

n
n

uu limsuplim  respectively. Putting this inequality with identities (1) and (2), we 

get the statement of the exercise. 
 

23.  (a) Suppose that 0=∫E f  for all measurable E Õ [0, 1] with m(E) = ½. Set A = {x œ 

[0, 1]: f (x) ¥ 0} and B = {x œ [0, 1]: -f (x) ¥ 0}. Then [0, 1] = A » B and one of the sets A or 
B must have outer measure greater than or equal to ½. We show that m(A) ¥ ½ implies f 
= 0 on [0, 1] a.e. This will establish the desired result, since if m(A) < ½, we could switch 
to –f. 
Assume m(A) ¥ ½. Since A is measurable, by exercise 20 in the measure theory problem 
list we can pick a, b œ (0, 1) such that m([0, a] … A) = ½ and m([b, 1] … A) = ½. Then a ¥ 
b, for otherwise  

1 = m([0, 1]) > m([0, a]) + m([b, 1]) ¥ m([0, a] … A) + m([b, 1] … A) = 1, 
which is a contradiction. Hence, in particular, A  = ([0, a] … A) » ([b, 1] … A). For 
convenience, we label E = [0, a] … A and F = [b, 1] … A in the calculations that follow. 
Since f is nonnegative on A, an easy application of the hypothesis to the sets E and F 
yields 

0=+≤ ∫∫∫ FEA
fff . 

Consequently, f (x) = 0 for almost every x œ A. And since [0, 1] = [0, ½] » [½ , 1], we 
have  
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0000

2/1

0

1

2/1

1

0

=−+=−+=−= ∫ ∫ ∫∫∫∫ AAB
ffffff . 

As f is nonpositive on B, it follows that f (x) = 0 for almost every x œ B. The observation 
{x œ [0, 1]: f (x) = 0} = {x œ A : f (x) = 0} » {x œ B : f (x) = 0} leads to the conclusion that 
m{x œ [0, 1]: f (x) = 0} = 0 and therefore to the desired result. 
  

 (b) Now assume that f > 0 a.e. and define K = {x œ [0, 1]: f (x) = 0}, K n = {x œ [0, 1]: 

0 § f (x) < 1/n}, and H n = {x œ [0, 1]:  f (x) ¥ 1/n}. Then for all n, K n and H n are disjoint 

and [0, 1] = K n » H n . Furthermore, the sets K n  are finite in measure and decreasing 

(K n  K 1+n ) to the limit K with m(K) = 0. In particular, ∞→nlim  m(K n )  = m(K) = 0 and it 

follows that m(K n ) < ¼ for all large enough n. Fix one such n and define 

)(
1

)(0)( x
n

xx
nn HK χχϕ +⋅=  

for all x œ [0, 1].  Then ϕ  is nonnegative and )()( xxf ϕ≥  for every x in [0, 1]. If E Õ [0, 1] 

with m(E) ¥ ½, 

)(
1

n
HEEE

HEm
n

f
n

∩==≥ ∫∫∫ ∩
ϕϕ . 

Notice that m(E … H n ) = m(E) – m(E … K n ) ¥ ¼ . Thus, inf{ ∫E f : m(E) ¥ ½} ¥ 1/(4n) > 0. 

 

24. For parts (a) through (c) it is helpful to note that nxxnnx 21)1(0 222 −+=−≤  and 

therefore 22
12 xnnx +≤ . For part (d) we will use the observation 

4

3

1

4/3

4

3

≤
+ u

u
 for all u œ 

R, which can be verified with elementary calculus. 
 

 (a) For all x œ (0, 1], 2/1
21

22
=≤

+ nx

nx

xn

nx
. Thus the

22
1

)(
xn

nx
xf n

+
=  are uniformly 

bounded on the compact support [0, 1] by M = ½. And since 0→nf  pointwise, it 

follows from the Lebesgue bounded convergence theorem that 0

1

0

→∫ nf . 

Alternatively, observe that 

∫∫ +
=

1

0

22

21

0
1

2

2

1
dx

xn

xn

n
f n  

which, after simple u-substitution, reduces to  
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0
2

)1ln(

1

1

2

1 2

0

2

→
+

=
+∫ n

n
dx

un

n

. 

 (b) For all x œ (0, 1], 2/1

2222 2

11

11
)( −≤

+
=

+
= x

xxn

nx

xn

xn
xf n  by the same estimation 

done in part (a). Since 2/1

2

1 −
x  is Lebesgue integrable on [0, 1] and since 

0
1

lim
22

=
+

∞→
xn

xn
n  for every x, it follows from the Lebesgue dominated convergence 

theorem that 0

1

0

→∫ nf . 

 
 (c) By elementary calculus, ln(u) § u for all u ¥ 1. Hence, 

2222

2/1

22 1

2

1

)ln(2

1

)ln(
|)(|

xn

xn

xn

xnx

xn

xnx
xf n

+
≤

+

−
=

+
=

−

. The squeeze theorem together with part 

(b) implies 0
1

2lim|)(|limlim

1

0

22

1

0

1

0

=
+

≤≤ ∫∫∫ ∞→∞→∞→ dx
xn

xn
dxxff nnnnn . 

 

(d) Notice that for all x œ (0, 1], 2/1
4/3

2/1

4

3

2/4

2/3

22

2/3

4

3

1

1

)(1

)(

1

−− ≤⋅
+

=⋅
+

=
+

xx
u

u

xnx

nx

xn

xn
, 

where we set u = nx. Since 0
1

lim
22

2/3

=
+

∞→
xn

xn
n , the integral converges to 0 by Lebesgue 

dominated convergence theorem. 
We can also verify the result with direct computation: 

0
2

)1ln(

1

1

2

1

1

2

2

1

1

2

0

1

0

22

21

0

22

2/3
2

→
+

=
+

=
+

=
+ ∫∫∫

n

n
du

un
dx

xn

xn

n
dx

xn

xn
n

 

 

25. (a) Let 
21

)(
)(

nx

eSin
xf

x

n
+

=  and 
21

1
)(

x
xg

+
= . Then it is immediate that for all  

x œ [0, ¶) and all n, |)(| xf n  § g(x). Since 0)( →xf n  for all x ∫ 0 and since 

∞<=∫
∞

2
)(

0

π
dxxg , we may apply Lebesgue dominated convergence theorem to conclude 

that 0
1

)(
lim

0

2
=

+∫
∞

∞→
dx

nx

eSin x

n
. 
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 (b) This sequence of integrals converges to 0 as well, but this is not as straight 

forward to demonstrate. Observe that 
2/321

)(
)(

xn

xnCos
xf n

+
=  is nonnegative in the interval  

[0, 1] with 0)(lim =∞→ xf nn  for all x œ (0, 1]. Moreover, for any x < y, )()( yfxf nn > and so 

each function in the sequence is decreasing. In particular, 0→nf  uniformly on any 

interval of the form [a, 1] where 0 < a. Uniform convergence allows the interchange of 
integral and limit to conclude that 

0limlim

11

== ∫∫ ∞→∞→
a

n
n

a

n
n

ff . 

Denote by ng : [0, 1] Ø R, the sequence of functions 
221

)(
xn

n
xg n

+
=  and notice that 

)(
11

)(
2/422/32

xg
xn

n

xn

n
xf nn =

+
≤

+
≤ . 

Hence 












+
+

+
= ∫∫∫

∞→∞→

1

2/32

0

2/32

1

0
1

)(

1

)(
suplim)(suplim

a

a

n
n

n

dx
xn

xnCos
dx

xn

xnCos
dxxf   

∫∫ +
+≤

∞→∞→

1

2/32

0
1

)(
suplim)(suplim

a
n

a

n
n

dx
xn

xnCos
dxxg  

)(tan
1

suplim 1

0

22
adx

xn

n
a

n

−

∞→

=
+

= ∫ . 

Now 0)(tanlim 1

0 =−
→ aa  and we can choose a arbitrarily close to 0 to establish that 

∫
∞→

1

0

)(suplim dxxf n
n

 = 0. Since we are integrating nonnegative functions, the argument is 

complete. 
 

26. Observe that )(xf n  < 0 if and only if nbxnax
ebea

−− < 22 , which happens if and only if x 

< 
)(

)/ln(2

abn

ab

−
 as can be verified by moving the exponential functions to the one side and 

the constants to the other side of the inequality. Set 
)(

)/ln(2

ab

ab
c

−
=  and nccn /= . Then 

n

p

n

aebeab
fff

acbc

c

n

c

nn

n

n

=
−−−

=+−=
−−∞∞

∫∫∫
)(2)(

||
00

. 

And therefore, 

∞==∑ ∑∫
∞

=

∞

=

∞

1 10

||
n n

n
n

p
f . 



 25

A similar result is obtained when we calculate ∑∫
∞

=

∞

1 0n

nf : 

∞=
−

=
+−

= ∑∑∫
∞

=

∞
−−∞

=

∞

101 0 n

nbxnax

n

n
n

ab

n

beae
f . 

However, when we interchange the sum and product, we get 

0
)1(

)1(
ln

11
00 0

22

1

=








−

−
=









−
−

−
=

∞

−

−∞ ∞

−

−

−

−∞

=
∫ ∫∑ aax

bbx

bx

bx

ax

ax

n

n
e

e
dx

e

eb

e

ea
f . 

 

27.  (a) Define nf : [0, ¶) Ø R by 
)1(

)/(
)(

2
xx

nxnSin
xf n

+
= . Then 

21

1
)(lim

x
xf n

n +
=

∞→
 and since 

1
)/(

)/(
≤

nx

nxSin
, it follows that )(

1

1
|)(|

2
xg

x
xf n =

+
≤ . Applying the Lebesgue dominated 

convergence theorem therefore yields 

21

1
lim

0

2

0

π
=

+
= ∫∫

∞∞

∞→
dx

x
f n

n
. 

 

 (b) Define nf : [0, 1] Ø R by 
nn

x

nx
xf

)1(

1
)(

2

2

+

+
=  and observe that for n ¥ 2, each 

function in the sequence is decreasing. Furthermore, |)(| xf n  § |)0(| nf = 1 for all n ¥ 2. 

And since 0)(lim =
∞→

xf n
n

 for all x  > 0, nf  Ø 0 a.e. We may therefore apply the bounded 

convergence theorem to conclude 

0
)1(

1
lim

)1(

1
limlim

1

0

2

21

0

2

21

0

=
+

+
=

+

+
= ∫∫∫ ∞→∞→∞→

dx
x

nx
dx

x

nx
f

nnnn
n

n
. 

 

 (c) Let nf : [0, ¶) Ø R be given by 
nn

nx

nxSin
xf

)/1(

)/(
)(

+
=  and define 

nn
nx

xg
)/1(

1
)(

+
= . Then if we hold x fixed, 0)(lim =

∞→
xf n

n
, x

n
n

exg
−

∞→
=)(lim , and || nf  § 

|| ng . Moreover, if n > 1, 

11

)/1(
)/1()(

0

1

00
−

=
−

+
−=+=

∞+−∞
−

∞

∫∫ n

n

n

nxn
dxnxdxxg

n
n

n , 

and therefore 1lim
0

=∫
∞

∞→ nn g . 
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Notice also that 1
0

=∫
∞

−
dxe

x . Hence if we label f (x) = 0 and g(x) = x
e

− , we have ff n →  

a.e., ggn →  a.e., and || nn fg ≥ a.e., which are the necessary conditions in applying the 

version of Lebesgue dominated convergence theorem that was discussed in exercise 20. 
In particular, we can now conclude that 

0
)/1(

)/(
lim

)/1(

)/(
lim

00

=
+

=
+ ∫∫

∞

∞→

∞

∞→
dx

nx

nxSin
dx

nx

nxSin
nnnn

. 

 

 (d) Define nf : [0, ¶) Ø R by 
221

)(
xn

n
xf n

+
=  and note that the value of ∫

∞

∞→
a

n
n

flim  

clearly depends on a. Despite this, whatever may be the value of a is selected, the 
integrand is nonnegative and therefore the techniques of Riemann integration from 
elementary calculus may be used to evaluate this Lebesgue integral, since both integrals 
yield the same results. With the use of simple u – substitution, we obtain 









−==

+
=

+
= −

∞→

∞
−

∞→

∞

∞→

∞

∞→

∞

∞→ ∫∫∫ )(tan
2

lim)(tanlim
1

lim
1

limlim 11

2222
nanxdx

xn

n
dx

xn

n
f

nan
a

n
a

n
a

n
n

π
. 

Hence, if a > 0, ∫
∞

∞→
a

n
n

flim = 0, if a = 0, ∫
∞

∞→
a

n
n

flim = p/2, and if a < 0, ∫
∞

∞→
a

n
n

flim = p. 

 

28. Observe first that for any a > 0, the function xxaxp )/1()( += is increasing for all x > 0 

and 1)(lim >=∞→
a

x exp . Thus the sequence of functions 
n

n nxfnxfnxf )/)(1ln()/)(1ln()( +=+=  increases pointwise to )ln( fef = . By the 

monotone convergence theorem, it therefore follows that ∫∫ =+
∞→ EEn

fnfn )/1ln(lim . 

With the added assumption that f is not 0 a.e. on E, the expression 
n

nfnnfn )/1ln())/(1ln( 2/1 +=+  increases to infinity, since it is of the form ( )∞

f  

and f  > 1 on a subset K Õ E of positive measure. Again, by the monotone 

convergence theorem, ∞=∞≥+ ∫∫∞→ KEn
nfn ))/(1ln(lim 2/1

. 

 
29. Before proceeding to the problem at hand, it would be helpful to review the 
following points:  

Observation 1: The output of the Lebesgue integral over a bounded interval [a, b] 
is the same as the output of the Riemann integral when the input happens to be a 

Riemann integrable function. In particular, ∫∫ =
b

a

b

a

fRfL )()( , whenever f is continuous on 

[a, b]. 
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Observation 2: If f is nonnegative, the monotone convergence theorem easily 

implies that ∫∫ =
b

a

b

a

fRfL )()( for any choice of a and b in [-¶, ¶]. 

Observation 3: If the Riemann integral of f over [a, b] is absolutely convergent, 

∫∫ =
b

a

b

a

fRfL )()(  for any choice of a and b in [-¶, ¶] as can be justified with the 

application of the Lebesgue dominated convergence theorem. 

We are now ready to deal with the problem. Let )()( βα xSinxxf = . We investigate 

∫
1

0

)( dxxf  by breaking the problem into 3 cases. 

 Case 1: (a > - 1, b Œ R.)   ∫
1

0

)()( dxxfR  § ∫
1

0

)( dxxR
α  = 

1

1

+α
. Thus, since f 

is nonnegative and since the Riemann integral of f is absolutely convergent, it follows 

from observation 2 that 
1

1
)()(

1

0

1

0
+

== ∫∫ α
fRfL  for all a > - 1. 

 Case 2: (a £ - 1, b ≥ 0.)  Write )()( βα xSinxxf =  = 
β

β
βα

x

xSin
x

)(+  and fix 

0>ε  such that 
2

1
1

)(
<−

β

β

x

xSin
. Then  

∫∫ ++
1

0

)()()(
2

1

ε

βα
ε

βα
dxxSinxRdxxR  

∫≤
1

0

)()( dxxfR  

∫∫ +≤ +
1

0

)()()(
2

3

ε

βα
ε

βα
dxxSinxRdxxR  

Thus, by integral comparison test, ∫
1

0

)()( dxxfR converges if and only if ∫
+

ε
βα

0

)( dxxR  

converges, which happens if and only if a + b > - 1. As f is nonnegative, we know from 

observation 2 that ∫∫ =
1

0

1

0

)()( fRfL  and that these integrals are finite under the condition 

a + b > - 1. 

 Case 3: (a £ - 1, b < 0.)  Define ]1,/1[ nn ff χ= . Clearly the nf  are 

continuous (and hence Riemann integrable and Lebesgue integrable) functions on [0, 1] 

with ff n →  pointwise a.e. Consequently we are free to apply techniques of elementary 

calculus to nf  to investigate the Riemann and Lebesgue integrability of f. Making a u-
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substitution with β
xu = to the integral dxxSinxf

n

n ∫∫ =
1

/1

1

0

)( βα  and taking the limit as n 

goes to infinity leads to the investigation of the integral ∫
∞

−
1

)(1
du

u

uSin
rβ

 with 

β

α

−

+
+=

1
1r . From the hypothesis on a and b, we know that r § 1. Adopting the 

procedure of exercise 9, we can convert ∫
∞

−
1

)(1
du

u

uSin
rβ

 into a convergent alternating 

series under the condition 0 < r § 1. Thus ∫
1

0

)( fR exists under the assumption b - 1 < a < 

- 1.  On the other hand, mimicking the proof that dx
x

xSin
∫
∞

0

)(
 is not Lebesgue integrable, 

leads to the conclusion that ∫
∞

−
1

)(1
du

u

uSin
rβ

 diverges as a Lebesgue integral for all a and 

b that satisfy the hypothesis of case 3. 
 

30. To investigate whether ∑
∞

=

−−=
1

)(
n

nx
exnxf

α is continuous we consider 2 cases. 

Case 1: (a > 0)  Write ∑
∞

=

−−−=
1

1 )()(
n

nx
enxnxf

α  and apply the 

Weierstrass M –test, which yields ∑∑
∞

=

−−−∞

=

−
≥

−− =
1

11

1 0

1 sup
nn

nx

x ennxen
αα . Since the latter 

series is absolutely convergent for a > 0, f must be the uniform limit of the sequence 

∑ =

−−=
N

n

nx

N exnxf
1

)( α of continuous functions. Therefore f is itself continuous. 

Case 1: (a £ 0)  Observe that f (0) = 0 for all choices of a œ R and that 

whenever x > 0 and a § 0 we have )(
1

)(
11

xg
e

xe
xeexnxf

x

x

n

nx

n

nx =
−

=≥=
−

−
∞

=

−∞

=

−− ∑∑ α . By 

l’Hospital’s rule,  

1
)1(

lim)(lim 00 =
−

=
−

−

→→ x

x

xx
e

xe
xg . 

Therefore, 

1)(suplim)(suplim
00

=≥ ++ →→
xgxf

xx
, 

which shows that f cannot be continuous at x = 0 when a § 0. 
 
For any a œ R, we observe that f is the monotonically increasing limit of the sequence of 

nonnegative functions ∑ =

−−=
N

n

nx

N exnxf
1

)( α . Therefore, by the monotone convergence 

theorem, 
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( ) ∑∑ ∫∫ ∑∫
∞

=

−−∞

=

∞
−−

∞
∞

=

−−
∞

===
1

2

1

00

1

0

nn

nx

n

nx
ndxexndxexnf

ααα
. 

Thus the integral converges if and only if the series ∑
∞

=

−−

1

2

n
n

α converges, which gives a 

> - 1 as the condition for membership in L 1 [0, ¶). 
 

31. (a) Notice that ∑
∞

=
−−=

1

2 ))(()/1()(
n

nxnExpnxf is nonnegative on R and is the 

limit of a monotonically increasing sequence of nonnegative functions 

∑ =
−−=

N

nN nxnExpnxf
1

2 ))(()/1()( . Thus the monotone convergence theorem implies that  

∑∫∑∫
∞

=

∞

∞−

−−
∞

=

∞

∞−

==
1

2/3

)(

1

21

n

nxn

n n
dxe

n
f

π
. 

The series is convergent and therefore f œ L 1 (R). 
 
 (b) The function f is continuous on R if and only if it is continuous on every 

interval of the form (-m, m), m œ N. Set ))(()/1()( 2
nxnExpnxkn −−= and notice that on  

(-m, m) 







>

≤
= −−

−∈ mnifen

mnifn
k

nmnn
mmx

2)(
),( )/1(

/1
||sup  

Applying the Weierstrass M-test we obtain the estimate 

∞<+≤+≤ ∑∑∑∑
∞

+=

−

=

−−
∞

+==−∈ 11

)(

11),(

111
||sup

2

mn

n
m

n

nmn

mn

m

nmmx

e
n

e
nn

f . 

The M-test shows that f is the uniform limit of a continuous sequence of functions 

∑ =
−−=

N

nN nxnExpnxf
1

2 ))(()/1()( on (-m, m). Therefore f is continuous on (-m, m) and 

hence, continuous on R. 
 
 (c) We proceed to examine differentiability of f on (-m, m) and make the 

preliminary observation that if the sequence 'Nf  is uniformly convergent, 'Nf  must 

converge to f ‘ (For a justification of this fact, consult theorem 10.7. on page 152 in the 
Carothers textbook). 

Define ∑∑
∞

=

∞

=
=−−−−=

11

2 )('))(()(2)(
n nn

xknxnExpnxxg  and notice that on (-m, 

m) 







>−

≤+
=

−−

−−

−∈ mnifemn

mnnifne
k

nmnn
mmx

2)(

2/12/1

),( )(2

)2()2(2
|'|sup  

Applying the Weierstrass M-test we obtain the estimate 
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∞<+≤−+≤ ∑∑∑∑
∞

+=

−

=

−−−
∞

+==

−

−∈ 11

2/1)(

11

2/1

),(

)2(2)(2)2(2||sup
2

mn

n
m

n

nmn

mn

m

nmmx

neneemnneg . 

The M-test shows that g is the uniform limit of a continuous sequence of functions 

∑ =
−−−−=

N

nN nxnExpnxxf
1

2 ))(()(2)(' on (-m, m). By theorem 10.7, g = f ‘ and therefore f 

is everywhere differentiable. 


